Grid computing

Grid computing

Grid computing is a term referring to the combination of computer resources from multiple administrative domains to reach a common goal. The grid can be thought of as a distributed system with non-interactive workloads that involve a large number of files. What distinguishes grid computing from conventional high performance computing systems such as cluster computing is that grids tend to be more loosely coupled, heterogeneous, and geographically dispersed. Although a grid can be dedicated to a specialized application, it is more common that a single grid will be used for a variety of different purposes. Grids are often constructed with the aid of general-purpose grid software libraries known as middleware.

Grid size can vary by a considerable amount. Grids are a form of distributed computing whereby a “super virtual computer” is composed of many networked loosely coupled computers acting together to perform very large tasks. Furthermore, “distributed” or “grid” computing, in general, is a special type of parallel computing that relies on complete computers (with onboard CPUs, storage, power supplies, network interfaces, etc.) connected to a network (private, public or the Internet) by a conventional network interface, such as Ethernet. This is in contrast to the traditional notion of a supercomputer, which has many processors connected by a local high-speed computer bus.



Grid computing combines computers from multiple administrative domains to reach a common goal,[1] to solve a single task, and may then disappear just as quickly.

One of the main strategies of grid computing is to use middleware to divide and apportion pieces of a program among several computers, sometimes up to many thousands. Grid computing involves computation in a distributed fashion, which may also involve the aggregation of large-scale cluster computing-based systems.

The size of a grid may vary from small—confined to a network of computer workstations within a corporation, for example—to large, public collaborations across many companies and networks. "The notion of a confined grid may also be known as an intra-nodes cooperation whilst the notion of a larger, wider grid may thus refer to an inter-nodes cooperation".[2]

Grids are a form of distributed computing whereby a “super virtual computer” is composed of many networked loosely coupled computers acting together to perform very large tasks. This technology has been applied to computationally intensive scientific, mathematical, and academic problems through volunteer computing, and it is used in commercial enterprises for such diverse applications as drug discovery, economic forecasting, seismic analysis, and back office data processing in support for e-commerce and Web services.

Comparison of grids and conventional supercomputers

“Distributed” or “grid” computing in general is a special type of parallel computing that relies on complete computers (with onboard CPUs, storage, power supplies, network interfaces, etc.) connected to a network (private, public or the Internet) by a conventional network interface, such as Ethernet. This is in contrast to the traditional notion of a supercomputer, which has many processors connected by a local high-speed computer bus.[citation needed]

The primary advantage of distributed computing is that each node can be purchased as commodity hardware, which, when combined, can produce a similar computing resource as multiprocessor supercomputer, but at a lower cost. This is due to the economies of scale of producing commodity hardware, compared to the lower efficiency of designing and constructing a small number of custom supercomputers. The primary performance disadvantage is that the various processors and local storage areas do not have high-speed connections. This arrangement is thus well-suited to applications in which multiple parallel computations can take place independently, without the need to communicate intermediate results between processors.[citation needed] The high-end scalability of geographically dispersed grids is generally favorable, due to the low need for connectivity between nodes relative to the capacity of the public Internet.[citation needed]

There are also some differences in programming and deployment. It can be costly and difficult to write programs that can run in the environment of a supercomputer, which may have a custom operating system, or require the program to address concurrency issues. If a problem can be adequately parallelized, a “thin” layer of “grid” infrastructure can allow conventional, standalone programs, given a different part of the same problem, to run on multiple machines. This makes it possible to write and debug on a single conventional machine, and eliminates complications due to multiple instances of the same program running in the same shared memory and storage space at the same time.

Design considerations and variations

One feature of distributed grids is that they can be formed from computing resources belonging to multiple individuals or organizations (known as multiple administrative domains). This can facilitate commercial transactions, as in utility computing, or make it easier to assemble volunteer computing networks.[citation needed]

One disadvantage of this feature is that the computers which are actually performing the calculations might not be entirely trustworthy. The designers of the system must thus introduce measures to prevent malfunctions or malicious participants from producing false, misleading, or erroneous results, and from using the system as an attack vector. This often involves assigning work randomly to different nodes (presumably with different owners) and checking that at least two different nodes report the same answer for a given work unit. Discrepancies would identify malfunctioning and malicious nodes.[citation needed]

Due to the lack of central control over the hardware, there is no way to guarantee that nodes will not drop out of the network at random times. Some nodes (like laptops or dialup Internet customers) may also be available for computation but not network communications for unpredictable periods. These variations can be accommodated by assigning large work units (thus reducing the need for continuous network connectivity) and reassigning work units when a given node fails to report its results in expected time.[citation needed]

The impacts of trust and availability on performance and development difficulty can influence the choice of whether to deploy onto a dedicated computer cluster, to idle machines internal to the developing organization, or to an open external network of volunteers or contractors.[citation needed] In many cases, the participating nodes must trust the central system not to abuse the access that is being granted, by interfering with the operation of other programs, mangling stored information, transmitting private data, or creating new security holes. Other systems employ measures to reduce the amount of trust “client” nodes must place in the central system such as placing applications in virtual machines.[citation needed]

Public systems or those crossing administrative domains (including different departments in the same organization) often result in the need to run on heterogeneous systems, using different operating systems and hardware architectures. With many languages, there is a trade off between investment in software development and the number of platforms that can be supported (and thus the size of the resulting network). Cross-platform languages can reduce the need to make this trade off, though potentially at the expense of high performance on any given node (due to run-time interpretation or lack of optimization for the particular platform).[citation needed] There are diverse scientific and commercial projects to harness a particular associated grid or for the purpose of setting up new grids. BOINC is a common one for various academic projects seeking public volunteers;[citation needed] more are listed at the end of the article.

In fact, the middleware can be seen as a layer between the hardware and the software. On top of the middleware, a number of technical areas have to be considered, and these may or may not be middleware independent. Example areas include SLA management, Trust and Security, Virtual organization management, License Management, Portals and Data Management. These technical areas may be taken care of in a commercial solution, though the cutting edge of each area is often found within specific research projects examining the field.[citation needed]

Market segmentation of the grid computing market

For the segmentation of the grid computing market, two perspectives need to be considered: the provider side and the user side:

The provider side

The overall grid market comprises several specific markets. These are the grid middleware market, the market for grid-enabled applications, the utility computing market, and the software-as-a-service (SaaS) market.

Grid middleware is a specific software product, which enables the sharing of heterogeneous resources, and Virtual Organizations. It is installed and integrated into the existing infrastructure of the involved company or companies, and provides a special layer placed among the heterogeneous infrastructure and the specific user applications. Major grid middlewares are Globus Toolkit, gLite, and UNICORE.

Utility computing is referred to as the provision of grid computing and applications as service either as an open grid utility or as a hosting solution for one organization or a VO. Major players in the utility computing market are Sun Microsystems, IBM, and HP.

Grid-enabled applications are specific software applications that can utilize grid infrastructure. This is made possible by the use of grid middleware, as pointed out above.

Software as a service (SaaS) is “software that is owned, delivered and managed remotely by one or more providers.” (Gartner 2007) Additionally, SaaS applications are based on a single set of common code and data definitions. They are consumed in a one-to-many model, and SaaS uses a Pay As You Go (PAYG) model or a subscription model that is based on usage. Providers of SaaS do not necessarily own the computing resources themselves, which are required to run their SaaS. Therefore, SaaS providers may draw upon the utility computing market. The utility computing market provides computing resources for SaaS providers.

The user side

For companies on the demand or user side of the grid computing market, the different segments have significant implications for their IT deployment strategy. The IT deployment strategy as well as the type of IT investments made are relevant aspects for potential grid users and play an important role for grid adoption.

CPU scavenging

CPU-scavenging, cycle-scavenging, cycle stealing, or shared computing creates a “grid” from the unused resources in a network of participants (whether worldwide or internal to an organization). Typically this technique uses desktop computer instruction cycles that would otherwise be wasted at night, during lunch, or even in the scattered seconds throughout the day when the computer is waiting for user input or slow devices. In practice, participating computers also donate some supporting amount of disk storage space, RAM, and network bandwidth, in addition to raw CPU power.

Many Volunteer computing projects, such as BOINC, use the CPU scavenging model. Since nodes are likely to go "offline" from time to time, as their owners use their resources for their primary purpose, this model must be designed to handle such contingencies.


The term grid computing originated in the early 1990s as a metaphor for making computer power as easy to access as an electric power grid in Ian Foster's and Carl Kesselman's seminal work, "The Grid: Blueprint for a new computing infrastructure" (2004).

CPU scavenging and volunteer computing were popularized beginning in 1997 by and later in 1999 by SETI@home to harness the power of networked PCs worldwide, in order to solve CPU-intensive research problems.[citation needed]

The ideas of the grid (including those from distributed computing, object-oriented programming, and Web services) were brought together by Ian Foster, Carl Kesselman, and Steve Tuecke, widely regarded as the "fathers of the grid".[3] They led the effort to create the Globus Toolkit incorporating not just computation management but also storage management, security provisioning, data movement, monitoring, and a toolkit for developing additional services based on the same infrastructure, including agreement negotiation, notification mechanisms, trigger services, and information aggregation. While the Globus Toolkit remains the de facto standard for building grid solutions, a number of other tools have been built that answer some subset of services needed to create an enterprise or global grid.

In 2007 the term cloud computing came into popularity, which is conceptually similar to the canonical Foster definition of grid computing (in terms of computing resources being consumed as electricity is from the power grid). Indeed, grid computing is often (but not always) associated with the delivery of cloud computing systems as exemplified by the AppLogic system from 3tera.[citation needed]

Fastest virtual supercomputers

Projects and applications

Grids computing offer a way to solve Grand Challenge problems such as protein folding, financial modeling, earthquake simulation, and climate/weather modeling. Grids offer a way of using the information technology resources optimally inside an organization. They also provide a means for offering information technology as a utility for commercial and noncommercial clients, with those clients paying only for what they use, as with electricity or water.

Grid computing is being applied by the National Science Foundation's National Technology Grid, NASA's Information Power Grid, Pratt & Whitney, Bristol-Myers Squibb Co., and American Express.[citation needed]

One cycle-scavenging networks is SETI@home, which was using more than 3 million computers to achieve 23.37 sustained teraflops (979 lifetime teraflops) as of September 2001.[10]

As of August 2009 Folding@home achieves more than 4 petaflops on over 350,000 machines.

The European Union funded projects through the framework programmes of the European Commission. BEinGRID (Business Experiments in Grid) was a research project funded by the European Commission[11] as an Integrated Project under the Sixth Framework Programme (FP6) sponsorship program. Started on June 1, 2006, the project ran 42 months, until November 2009. The project was coordinated by Atos Origin. According to the project fact sheet, their mission is “to establish effective routes to foster the adoption of grid computing across the EU and to stimulate research into innovative business models using Grid technologies”. To extract best practice and common themes from the experimental implementations, two groups of consultants are analyzing a series of pilots, one technical, one business. The project is significant not only for its long duration, but also for its budget, which at 24.8 million Euros, is the largest of any FP6 integrated project. Of this, 15.7 million is provided by the European commission and the remainder by its 98 contributing partner companies. Since the end of the project, the results of BEinGRID have been taken up and carried forward by

The Enabling Grids for E-sciencE project, based in the European Union and included sites in Asia and the United States, was a follow-up project to the European DataGrid (EDG) and evoled into the European Grid Infrastructure. This, along with the LHC Computing Grid[12] (LCG), was developed to support experiments using the CERN Large Hadron Collider. The A list of active sites participating within LCG can be found online[13] as can real time monitoring of the EGEE infrastructure.[14] The relevant software and documentation is also publicly accessible.[15] There is speculation that dedicated fiber optic links, such as those installed by CERN to address the LCG's data-intensive needs, may one day be available to home users thereby providing internet services at speeds up to 10,000 times faster than a traditional broadband connection.[16]

The project was started in 1997. The NASA Advanced Supercomputing facility (NAS) ran genetic algorithms using the Condor cycle scavenger running on about 350 Sun Microsystems and SGI workstations.

In 2001, United Devices operated the United Devices Cancer Research Project based on its Grid MP product, which cycle-scavenges on volunteer PCs connected to the Internet. The project ran on about 3.1 million machines before its close in 2007.[17]

As of 2011, over 6.2 million machines running the open-source Berkeley Open Infrastructure for Network Computing (BOINC) platform are members of the World Community Grid, which tops the processing power of the current fastest supercomputer system (China's Tianhe-I).[18]


Today there are many definitions of grid computing:

  • In his article “What is the Grid? A Three Point Checklist”,[1] Ian Foster lists these primary attributes:
    • Computing resources are not administered centrally.
    • Open standards are used.
    • Nontrivial quality of service is achieved.
  • Plaszczak/Wellner[19] define grid technology as "the technology that enables resource virtualization, on-demand provisioning, and service (resource) sharing between organizations."
  • IBM defines grid computing as “the ability, using a set of open standards and protocols, to gain access to applications and data, processing power, storage capacity and a vast array of other computing resources over the Internet. A grid is a type of parallel and distributed system that enables the sharing, selection, and aggregation of resources distributed across ‘multiple’ administrative domains based on their (resources) availability, capacity, performance, cost and users' quality-of-service requirements”.[20]
  • An earlier example of the notion of computing as utility was in 1965 by MIT's Fernando Corbató. Corbató and the other designers of the Multics operating system envisioned a computer facility operating “like a power company or water company”.[21]
  • Buyya/Venugopal[22] define grid as "a type of parallel and distributed system that enables the sharing, selection, and aggregation of geographically distributed autonomous resources dynamically at runtime depending on their availability, capability, performance, cost, and users' quality-of-service requirements".
  • CERN, one of the largest users of grid technology, talk of The Grid: “a service for sharing computer power and data storage capacity over the Internet.”[23]

Grids can be categorized with a three stage model of departmental grids, enterprise grids and global grids. These correspond to a firm initially utilising resources within a single group i.e. an engineering department connecting desktop machines, clusters and equipment. This progresses to enterprise grids where nontechnical staff's computing resources can be used for cycle-stealing and storage. A global grid is a connection of enterprise and departmental grids that can be used in a commercial or collaborative manner.

See also

Alliances and organizations

Production grids

International projects

Name Region Start End
Open Middleware Infrastructure Institute Europe (OMII-Europe) Europe May 2006 May 2008
Enabling Grids for E-sciencE (EGEE) Europe March 2004 March 2006
Enabling Grids for E-sciencE II (EGEE II) Europe April 2006 April 2008
Enabling Grids for E-sciencE III (EGEE III) Europe May 2008 April 2010
Grid enabled Remote Instrumentation with Distributed Control and Computation (GridCC) Europe September 2005 September 2008
D4Science (DIstributed colLaboratories Infrastructure on Grid ENabled Technology 4 Science) Europe and Asia and the Pacific January 2008 December 2009
Gisela - Grid Initiatives for e-Science virtual communities in Europe and Latin America Europe and Latin America September 2010 September 2012
Grid++ - The first commercial Grid Computing system that provides developer services and tools. (Paas/Saas) USA and Europe September 2009 September ongoing
E-science grid facility for Europe and Latin America (EELA-2) Europe and Latin America April 2008 March 2010
E-Infrastructure shared between Europe and Latin America (EELA) Europe and Latin America January 2006 December 2008
Business Experiments in GRID (BEinGRID) Europe June 2006 November 2009
BREIN Europe September 2006 January 2010
KnowARC Europe June 2006 November 2009
Nordic Data Grid Facility Scandinavia and Finland June 2006 December 2010
DataTAG Europe and North America January 2001 January 2003
European DataGrid (EDG) Europe March 2001 March 2004
BalticGrid project / BalticGrid-II project Europe (Baltic States) November 2005 April 2010
EUFORIA (EU Fusion fOR Iter Applications) Europe January 2008 December 2010
World Community Grid Global November 2004 active
SORMA (Self-Organizing ICT Resource Management) Europe August 2006 July 2009
XtreemOS Europe June 2006 (May 2010) ext. to September 2010
GridEcon Europe June 2006 April 2009
OurGrid Brazil December 2004 active
High Performance and Grid Computing Research Group US December 2010 active

National projects

Standards and APIs

Software implementations and middleware

Monitoring frameworks

  • GStat



  1. ^ a b "What is the Grid? A Three Point Checklist". 
  2. ^ "Pervasive and Artificial Intelligence Group :: publications [Pervasive and Artificial Intelligence Research Group]". May 18, 2009. Retrieved July 29, 2010. 
  3. ^ "Father of the Grid". 
  4. ^ "BOINCstats – BOINC combined credit overview." Retrieved on April 4, 2011.
  5. ^ [1]. Retrieved 17 March 2009.
  6. ^ "MilkyWay@Home Credit overview". BOINC. Retrieved April 21, 2010. 
  7. ^ "SETI@Home Credit overview". BOINC. Retrieved April 21, 2010. 
  8. ^ "Einstein@Home Credit overview". BOINC. Retrieved April 21, 2010. 
  9. ^ "Internet PrimeNet Server Distributed Computing Technology for the Great Internet Mersenne Prime Search". GIMPS. Retrieved June 6, 2011 
  10. ^ [2][dead link]
  11. ^ Home page of BEinGRID
  12. ^ Large Hadron Collider Computing Grid official homepage
  13. ^ "GStat 2.0 – Summary View – GRID EGEE". Retrieved July 29, 2010. 
  14. ^ "Real Time Monitor". Retrieved July 29, 2010. 
  15. ^ "LCG – Deployment". Retrieved July 29, 2010. 
  16. ^ "Coming soon: superfast internet"
  17. ^ [3][dead link]
  18. ^ BOINC stats
  19. ^ P Plaszczak, R Wellner, Grid computing, 2005, Elsevier/Morgan Kaufmann, San Francisco
  20. ^ IBM Solutions Grid for Business Partners: Helping IBM Business Partners to Grid-enable applications for the next phase of e-business on demand
  21. ^
  22. ^ "A Gentle Introduction to Grid Computing and Technologies" (PDF). Retrieved May 6, 2005. 
  23. ^ "The Grid Café – The place for everybody to learn about grid computing". CERN. Retrieved December 3, 2008. 


External links

Wikimedia Foundation. 2010.

Игры ⚽ Нужно решить контрольную?

Look at other dictionaries:

  • Grid-Computing — ist eine Form des verteilten Rechnens, bei der ein virtueller Supercomputer aus einem Cluster lose gekoppelter Computer erzeugt wird. Es wurde entwickelt, um rechenintensive wissenschaftliche – insbesondere mathematische – Probleme zu lösen.… …   Deutsch Wikipedia

  • grid computing — ➔ computing * * * grid computing UK US noun [U] (also grid) IT ► the process of connecting computers together using the internet so that they can share information: »It s the latest evolution of grid computing, in which PCs are used to sort… …   Financial and business terms

  • Grid Computing —   [dt. »(auf einem) Gitter rechnen«, verteiltes Rechnen] das, das Benutzen von Ressourcen entfernter Computer für die elektronische Datenverarbeitung. Dieses Konzept kann als Erweiterung des Parallelrechners angesehen werden, bei dem mehrere… …   Universal-Lexikon

  • Grid computing — es una tecnología que permite aprovechar los ciclos de procesamiento no utilizado de los cientos, miles o millones de ordenadores conectados a una red. Desarrollado en ámbitos científicos a principios de los 90, su entrada al mercado comercial… …   Enciclopedia Universal

  • Grid Computing — Dieser Artikel oder Abschnitt bedarf einer Überarbeitung. Näheres ist auf der Diskussionsseite angegeben. Hilf mit, ihn zu verbessern, und entferne anschließend diese Markierung. Grid Computing ist eine Form des verteilten Rechnens, bei der ein… …   Deutsch Wikipedia

  • Grid computing — Dieser Artikel oder Abschnitt bedarf einer Überarbeitung. Näheres ist auf der Diskussionsseite angegeben. Hilf mit, ihn zu verbessern, und entferne anschließend diese Markierung. Grid Computing ist eine Form des verteilten Rechnens, bei der ein… …   Deutsch Wikipedia

  • Grid Computing — Grille informatique Pour les articles homonymes, voir Grille …   Wikipédia en Français

  • Grid computing — Grille informatique Pour les articles homonymes, voir Grille …   Wikipédia en Français

  • Grid\ Computing — Um rechenintensive Computer Aufgaben zu bewältigen, sind nicht unbedingt Grossrechner notwendig: Beim Grid Computing werden viele verschiedene Rechner zusammengeschlossen, um Rechenaufgaben in kurzer Zeit zu bewältigen. Grid Computing bedeutet… …   Online-Wörterbuch Deutsch-Lexikon

  • grid computing — grid com.puting n [U] a system of running a computer program using a lot of small computers that are connected together in order to do very complicated jobs …   Dictionary of contemporary English

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”