Measurement while drilling

Measurement while drilling
Well logging
Gamma ray logging
Spontaneous potential logging
Resistivity logging
Density logging
Sonic logging
Caliper logging
Mud logging

v · edit] Types of information transmitted

Directional information

MWD tools are generally capable of taking directional surveys in real time. The tool uses accelerometers and magnetometers to measure the inclination and azimuth of the wellbore at that location, and they then transmit that information to the surface. With a series of surveys at appropriate intervals (anywhere from every 30 ft (ie 10m) to every 500 ft), the location of the wellbore can be calculated.

By itself, this information allows operators to prove that their well does not cross into areas that they are not authorized to drill. However, due to the cost of MWD systems, they are not generally used on wells intended to be vertical. Instead, the wells are surveyed after drilling through the use of Multishot Surveying Tools lowered into the drillstring on slickline or wireline.

The primary use of real-time surveys is in Directional Drilling. For the Directional Driller to steer the well towards a target zone, he must know where the well is going, and what the effects of his steering efforts are.

MWD tools also generally provide toolface measurements to aid in directional drilling using downhole mud motors with bent subs or bent housings. For more information on the use of toolface measurements, see Directional Drilling.

Drilling mechanics information

MWD tools can also provide information about the conditions at the drill bit. This may include:

  • Rotational speed of the drillstring
  • Smoothness of that rotation
  • Type and severity of any vibration downhole
  • Downhole temperature
  • Torque and Weight on Bit, measured near the drill bit
  • Mud flow volume

Use of these information can allow the operator to drill the well more efficiently, and to ensure that the MWD tool and any other downhole tools, such as Mud Motors, Rotary Steerable Systems, and LWD tools, are operated within their technical specifications to prevent tool failure. This information also is valuable to Geologists responsible for the well information about the formation which is being drilled.

Formation properties

Many MWD tools, either on their own, or in conjunction with separate Logging While Drilling tools, can take measurements of formation properties. At the surface, these measurements are assembled into a log, similar to one obtained by wireline logging.

LWD Logging While Drilling tools are able to measure a suite of geological characteristics including- density, porosity, resistivity, acoustic-caliper, inclination at the drill bit (NBI), magnetic resonance and formation pressure.

The MWD tool allows these measurements to be taken and evaluated while the well is being drilled. This makes it possible to perform Geosteering, or Directional Drilling based on measured formation properties, rather than simply drilling into a preset target.

Most MWD tools contain an internal Gamma Ray sensor to measure natural Gamma Ray values. This is because these sensors are compact, inexpensive, reliable, and can take measurements through unmodified drill collars. Other measurements often require separate Logging While Drilling tools, which communicate with the MWD tools downhole through internal wires.

Measurement while drilling can be cost-effective in exploration wells, particularly in areas of the Gulf of Mexico where wells are drilled in areas of salt diapirs. The resistivity log will detect penetration into salt, and early detection prevents salt damage to bentonite drilling mud.

Data transmission methods

Mud pulse telemetry

This is the most common method of data transmission used by MWD (Measurement While Drilling) tools. Downhole a valve is operated to restrict the flow of the drilling mud (slurry) according to the digital information to be transmitted. This creates pressure fluctuations representing the information. The pressure fluctuations propagate within the drilling fluid towards the surface where they are received from pressure sensors. On the surface, the received pressure signals are processed by computers to reconstruct the information. The technology is available in three varieties - positive pulse, negative pulse, and continuous wave.

Positive Pulse
Positive Pulse tools briefly close and open the valve to restrict the mud flow within the drill pipe. This produces an increase in pressure that can be seen at surface. Line codes are used to represent the digital information in form of pulses.
Negative Pulse
Negative pulse tools briefly open and close the valve to release mud from inside the drillpipe out to the annulus. This produces a decrease in pressure that can be seen at surface. Line codes are used to represent the digital information in form of pulses.
Continuous Wave
Continuous wave tools gradually close and open the valve to generate sinusoidal pressure fluctuations within the drilling fluid. Any digital modulation scheme with a continuous phase can be used to impose the information on a carrier signal. The most widely used modulation scheme is continuous phase modulation.

When underbalanced drilling is used, mud pulse telemetry can become unusable. This is because usually in order to reduce the equivalent density of the drilling mud a compressible gas is injected into the mud. This causes high signal attenuation which drastically reduces the ability of the mud to transmit pulsed data. In this case it is necessary to use methods different from mud pulse telemetry, such as electromagnetic waves propagating through the formation or wired drill pipe telemetry.

Current mud pulse telemetry technology offers a bandwidths of up to 40 bps.[1] The data rate drops with increasing length of the wellbore and is typically as low as 1.5 bps[2] - 3.0 bps.[1] (bits per second) at a depth of 35,000 ft - 40,000 ft (10668 m - 12192 m).

Surface to down hole communication is typically done via changes to drilling parameters, i.e. change of the rotation speed of the drill string or change of the mud flow rate. Making changes to the drilling parameters in order to send information can require interruption of the drilling process, which is unfavorable due to the fact that it causes non-productive time.

Electromagnetic telemetry (EM Tool)

These tools incorporate an electrical insulator in the drillstring. To transmit data the tool generates an altered voltage difference between the top part (the main drillstring, above the insulator), and the bottom part (the drill bit, and other tools located below the insulator of the MWD tool). On surface a wire is attached to the wellhead, which makes contact with the drillpipe at the surface. A second wire is attached to a rod driven into the ground some distance away. The wellhead and the ground rod form the two electrodes of a dipole antenna. The voltage difference between the two electrodes is the receive signal that is decoded by a computer.

The EM tool generates voltage differences between the drillstring sections in the pattern of very low frequency (2–12 Hz) waves. The data is imposed on the waves through digital modulation.

This system generally offers data rates of up to 10 bits per second. In addition, many of these tools are also capable of receiving data from the surface in the same way, while mud pulse-based tools rely on changes in the drilling parameters, such as rotation speed of the drillstring or the mud flow rate, to send information from the surface to downhole tools. Making changes to the drilling parameters in order to send information to the tools generally interrupts the drilling process, causing lost time.

Compared to mud pulse telemetry, electronic pulse telemetry is more effective in certain specialized situations, such as underbalanced drilling or when using air as drilling fluid. However, it generally falls short when drilling exceptionally deep wells, and the signal can lose strength rapidly in certain types of formations, becoming undetectable at only a few thousand feet of depth.

Wired Drill Pipe

Several oilfield service companies are currently developing wired drill pipe systems. These systems use electrical wires built into every component of the drillstring, which carry electrical signals directly to the surface. These systems promise data transmission rates orders of magnitude greater than anything possible with mud pulse or electromagnetic telemetry, both from the downhole tool to the surface, and from the surface to the downhole tool. The IntelliServ [3] wired pipe network, offering data rates upwards of 1 megabit per second, became commercial in 2006. Representatives from BP America, StatoilHydro, Baker Hughes INTEQ, and Schlumberger presented three success stories using this system, both onshore and offshore, at the March, 2008 SPE/IADC Drilling Conference in Orlando, Florida.[4]

Retrievable tools

MWD tools may be semi-permanently mounted in a drill collar (only removable at servicing facilities), or they may be self-contained and wireline retrievable.

Retrievable tools, sometimes known as Slim Tools, can be retrieved and replaced using wireline through the drill string. This generally allows the tool to be replaced much faster in case of failure, and it allows the tool to be recovered if the drillstring becomes stuck. Retrievable tools must be much smaller, usually about 2 inches or less in diameter, though their length may be 20 feet or more. The small size is necessary for the tool to fit through the drillstring, however, it also limits the tool's capabilities. For example, slim tools are not capable of sending data at the same rates as collar mounted tools, and they are also more limited in their ability to communicate with and supply electrical power to other LWD tools.

Collar-mounted tools, also known as Fat Tools, cannot generally be removed from their drill collar at the wellsite. If the tool fails, the entire drillstring must be pulled out of the hole to replace it. However, without the need to fit through the drillstring, the tool can be larger and more capable.

The ability to retrieve the tool via wireline is often useful. For example, if the drillstring becomes stuck in the hole, then retrieving the tool via wireline will save a substantial amount of money compared to leaving it in the hole with the stuck portion of the drillstring. However, there are some limitations on the process.


Retrieving a tool using wireline is not necessarily faster than pulling the tool out of the hole. For example, if the tool fails at 1,500 ft (460 m) while drilling with a triple rig (able to trip 3 joints of pipe, or about 90 ft (30 m) feet, at a time), then it would generally be faster to pull the tool out of the hole than it would be to rig up wireline and retrieve the tool, especially if the wireline unit must be transported to the rig.

Wireline retrievals also introduce additional risk. If the tool becomes detached from the wireline, then it will fall back down the drillstring. This will generally cause severe damage to the tool and the drillstring components in which it seats, and will require the drillstring to be pulled out of the hole to replace the failed components, thus resulting in a greater total cost than pulling out of the hole in the first place. The wireline gear might also fail to latch onto the tool, or in the case of a severe failure, might bring only a portion of the tool to the surface. This would require the drillstring to be pulled out of the hole to replace the failed components, thus making the wireline operation a waste of time.


See also

Wikimedia Foundation. 2010.

Look at other dictionaries:

  • Logging while drilling — (LWD) is a technique of measuring geologic formation properties in real time while drilling an oil well.DescriptionLogging while drilling, along with measurement while drilling systems provide wellbore directional surveys, petrophysical well logs …   Wikipedia

  • Drilling engineering — is a subset of petroleum engineering. Drilling engineers design and implement procedures to drill wells as safely and economically as possible. They work closely with the drilling contractor, service contractors, and compliance personnel, as well …   Wikipedia

  • Drilling fluid invasion — is a process that occurs in a well being drilled with higher wellbore pressure than formation pressure. The liquid component of the drilling fluid (known as the mud filtrate) continues to invade the porous and permeable formation until the solids …   Wikipedia

  • Drilling fluid — This article is about fluids used when drilling a well. For fluids used with drill bits during metal working, see cutting fluid. Driller pouring a foaming agent down the rod string on a drilling rig In geotechnical engineering, drilling fluid is… …   Wikipedia

  • Drilling rig — For a detailed diagram of a Petroleum drilling rig, see List of components of oil drilling rigs. Drilling rig preparing rock blasting …   Wikipedia

  • Drilling mud — In geotechnical engineering, drilling mud, also known as spud mud (when beginning the drilling process), is a drilling fluid used to drill boreholes into the earth. Often used while drilling oil and natural gas wells and on exploration drilling… …   Wikipedia

  • Directional drilling — A horizontal directional drill in operation Directional drilling (or slant drilling) is the practice of drilling non vertical wells. It can be broken down into three main groups: Oilfield Directional Drilling, Utility Installation Directional… …   Wikipedia

  • Underbalanced drilling — Underbalanced drilling, or UBD, is a procedure used to drill oil and gas wells where the pressure in the wellbore is kept lower than the fluid pressure in the formation being drilled. As the well is being drilled, formation fluid flows into the… …   Wikipedia

  • Sperry Drilling Services — is Halliburton s division of MWD (measurement while drilling), LWD (Logging While Drilling), DD (Directional Drilling) and SDL (Surface Data Logging) tools and services.This line of services provides wellbore directional surveys, well logs, and… …   Wikipedia

  • Precision Drilling — Infobox Company company name = Precision Drilling Trust company company type = Oilfield services company type = Public (NYSE|PDS, TSX|PD.UN) company slogan = foundation = 1969 location = Calgary, Alberta, Canada key people = CEO: Kevin A. Neveu… …   Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”