The sievert (symbol: Sv) is the International System of Units (SI) SI derived unit of dose equivalent radiation. It attempts to quantitatively evaluate the biological effects of ionizing radiation as opposed to just the absorbed dose of radiation energy, which is measured in gray. It is named after Rolf Maximilian Sievert, a Swedish medical physicist renowned for work on radiation dosage measurement and research into the biological effects of radiation.



The unit gray measures the absorbed dose of radiation (D), absorbed by any material. The unit sievert measures the equivalent dose of radiation (H), having the same damaging effect as an equal dose of gamma rays.

Both the gray, with symbol Gy and the sievert, with symbol Sv are SI derived units, defined as a unit of energy (joule) per unit of mass (kilogram):

1 Gy = 1 Sv = 1 J / kg

This SI unit is named after Rolf Maximilian Sievert. As with every SI unit whose name is derived from the proper name of a person, the first letter of its symbol is upper case (Sv). When an SI unit is spelled out in English, it should always begin with a lower case letter (sievert), except where any word would be capitalized, such as at the beginning of a sentence or in capitalized material such as a title. Note that "degree Celsius" conforms to this rule because the "d" is lowercase. —Based on The International System of Units, section 5.2.

Dose equivalent

The equivalent dose to a tissue is found by multiplying the absorbed dose, in gray, by a weighting factor (WR). The relation between absorbed dose D and equivalent dose H is thus:

H = W_R \cdot D.

The weighting factor (sometimes referred to as a quality factor) is determined by the radiation type and energy range.[1]

H_T = \sum_R W_R \cdot D_{T,R}\ ,


HT is the equivalent dose absorbed by tissue T
DT,R is the absorbed dose in tissue T by radiation type R
WR is the weighting factor defined by the following table
Radiation type and energy WR
electrons, muons, photons (all energies)
protons and charged pions
alpha particles, fission fragments, heavy ions
(function of linear energy transfer L in keV/μm)
L < 10
10 ≤ L ≤ 100 0.32·L − 2.2
L > 100 300 / sqrt(L)

Thus for example, an absorbed dose of 1 Gy by alpha particles will lead to an equivalent dose of 20 Sv. The maximum weight of 30 is obtained for neutrons with L = 100 keV/μm.

Effective dose

The effective dose of radiation (E), absorbed by a person is obtained by averaging over all irradiated tissues with weighting factors adding up to 1:[1][2]

E = \sum_T W_T \cdot H_T = \sum_T W_T \sum_R W_R \cdot D_{T,R}.
Tissue type WT
Bone marrow, colon, lung, stomach, breast, remaining tissues
Bladder, oesophagus, liver, thyroid
Bone surface, brain, salivary glands, skin

For other organisms, weighting factors have been defined, relative to the effect on humans:

Organism relative weight
Viruses, bacteria, protozoans 0.03 – 0.0003
Insects 0.1 – 0.002
Molluscs 0.06 – 0.006
Plants 2 – 0.02
Fish 0.75 – 0.03
Amphibians 0.4 – 0.14
Reptiles 1 – 0.075
Birds 0.6 – 0.15

SI multiples and conversions

Frequently used SI multiples are the millisievert (1 mSv = 0.001 Sv) and microsievert (1 μSv = 0.000001 Sv).

An older unit for the equivalent dose, is the rem,[3] still often used in the United States. One sievert is equal to 100 rem:

  • 1 rem = 0.01 Sv = 10 mSv
  • 1 mrem = 0.01 mSv = 10 μSv
  • 1 Sv = 100 rem
  • 1 mSv = 100 mrem = 0.1 rem
  • 1 μSv = 0.1 mrem

The conventional units for its time derivative is mSv/h.

Symptom benchmarks

See also Radiation poisoning.

Dose examples

Single dose examples

Hourly dose examples

  • Average individual background radiation dose: 0.23 μSv/h (0.00023 mSv/h); 0.17 μSv/h for Australians, 0.34 μSv/h for Americans[5][10][11]
  • The hourly doses are 1.6 μSv/h (14 mSv/year) in the city of Fukushima and 0.062 μSv/h (0.54 mSv/year) in Tokyo as of May 25, 2011.[12]
  • Highest reported level during Fukushima accident: 433 Sv/h for the gas/steam inside the primary containment (drywell) of reactor unit 1 on August 19, 2011 (note the reading is not micro or milli Sv, but Sv/h).[13]
  • Highest dose rate measured in Finland during the Chernobyl disaster: 5 µSv/h [14]
  • Measurements taken after Fukushima accident: Greater than 10 Sv/h for the Ventilation shaft between reactors I and II(equipment used could only read up to 10 Sv/h) [15][16]

Yearly dose examples

  • Maximum acceptable dose for the public from any man made facility: 1 mSv/year[17]
  • Dose from living near a nuclear power station: 0.0001–0.01 mSv/year[8][10]
  • Dose from living near a coal-fired power station: 0.0003 mSv/year[10]
  • Dose from sleeping next to a human for 8 hours every night: 0.02 mSv/year[10]
  • Dose from cosmic radiation (from sky) at sea level: 0.24 mSv/year[8]
  • Dose from terrestrial radiation (from ground): 0.28 mSv/year[8]
  • Dose from natural radiation in the human body: 0.40 mSv/year[8]
  • Dose from standing in front of the granite of the United States Capitol building: 0.85 mSv/year[18]
  • Average individual background radiation dose: 2 mSv/year; 1.5 mSv/year for Australians, 3.0 mSv/year for Americans[5][10][11]
  • Dose from atmospheric sources (mostly radon): 2 mSv/year[8][19]
  • Total average radiation dose for Americans: 6.2 mSv/year[20]
  • New York-Tokyo flights for airline crew: 9 mSv/year[11]
  • Current average dose limit for nuclear workers: 20 mSv/year[11]
  • Dose from background radiation in parts of Iran, India and Europe: 50 mSv/year[11]
  • Dose from smoking 30 cigarettes a day: 60–160 mSv/year[18][21]

Dose limit examples

  • Criterion for relocation after Chernobyl disaster: 350 mSv/lifetime[11]
  • In most countries, the current maximum permissible dose to radiation workers is 20 mSv per year averaged over five years, with a maximum of 50 mSv in any one year. This is over and above background exposure, and excludes medical exposure. The value originates from the International Commission on Radiological Protection (ICRP), and is coupled with the requirement to keep exposure as low as reasonably achievable (ALARA) — taking into account social and economic factors.[22]
  • Public dose limits for exposure from uranium mining or nuclear plants are usually set at 1 mSv/yr above background.[22]
  • Dose limit applied to workers during Fukushima emergency: 250 mSv.[23]


Historically, the weighting factors for radiation type and tissue type were separated out as Q and N respectively. In 2002, the CIPM decided that the distinction between Q and N caused too much confusion and therefore deleted the factor N from the definition of absorbed dose in the SI brochure.[24]

The older version of the definitions contained Q and N factors, corresponding to the current WR and WT, with values:

Radiation type and energy Q
electrons, positrons, muons, or photons (gamma, X-ray)
neutrons <10 keV
neutrons 10–100 keV
neutrons 100 keV – 2 MeV
neutrons 2 MeV – 20 MeV
neutrons >20 MeV
protons other than recoil protons and energy >2 MeV
alpha particles, fission fragments, nonrelativistic heavy nuclei
Tissue type N
bone surface, skin
bladder, breast, liver, esophagus, thyroid, other
bone marrow, colon, lung, stomach

See also


  1. ^ a b "The 2007 Recommendations". International Commission on Radiological Protection. Retrieved 2011-04-15. 
  2. ^ A D Wrixon. "New ICRP recommendations". Journal on Radiological Protection. Retrieved 2011-04-15. 
  3. ^ Office of Air and Radiation; Office of Radiation and Indoor Air (May 2007). "Radiation: Risks and Realities" (PDF). Radiation: Risks and Realities. U.S. Environmental Protection Agency. p. 2. Retrieved 19 March 2011. 
  4. ^ Brenner, David J.; Hall, Eric J. (2007). "Computed Tomography — an Increasing Source of Radiation Exposure". New England Journal of Medicine 357 (22): 2277–84. doi:10.1056/NEJMra072149. PMID 18046031. 
  5. ^ a b c "What Happened and What Didn't in the TMI-2 Accident". American Nuclear Society. Retrieved 2011-03-16. 
  6. ^ a b "Radiation Benefit of Digital Mammogram Not Clear". 
  7. ^ a b Van Unnik, JG; Broerse, JJ; Geleijns, J; Jansen, JT; Zoetelief, J; Zweers, D (1997). "Survey of CT techniques and absorbed dose in various Dutch hospitals". The British journal of radiology 70 (832): 367–71. PMID 9166072. 
  8. ^ a b c d e f "Radiation Risks and Realities". EPA. 
  9. ^ a b International Commission on Radiological Protection (1991). 1990 Recommendations of the International Commission on Radiological Protection - ICRP Publication 60. p. 52. 
  10. ^ a b c d e "Everyday exposures to radiation". PBS. 
  11. ^ a b c d e f "Radiation fears after Japan blast". BBC. 18 April 2011. 
  12. ^[Full citation needed]
  13. ^ State of the reactor, Fukushima No. 1 nuclear power plant, Mar 15, 2011 (Tuesday) - 03 July 2011 (Sun),
  14. ^
  15. ^
  16. ^
  17. ^ "Radiation and Safety". International Atomic Energy Agency. Retrieved 2011-03-27. 
  18. ^ a b Radiation at FUSRAP Sites
  19. ^ "Radiation Exposure: The Facts vs. Fiction". University of Iowa Hospitals & Clinics. 
  20. ^ "Fact Sheet on Biological Effects of Radiation". United States Nuclear Regulatory Commission. 
  21. ^
  22. ^ a b Nuclear Radiation and Health Effects, June 2010, World nuclear Association.
  23. ^ Bradsher, Keith; Tabuchi, Hiroko (15 March 2011). "Last Defense at Troubled Reactors: 50 Japanese Workers". The New York Times. 
  24. ^ CIPM, 2002: Recommendation 2 : Dose Equivalent, Bureau Internatioual de Poids et Measures (MIPM).


Wikimedia Foundation. 2010.

Look at other dictionaries:

  • sievert — [ sivɛrt ] n. m. • 1977; du nom du physicien ♦ Métrol. Unité de mesure d équivalent de dose de radiation absorbée (symb.Sv), correspondant à la dose de rayonnement absorbée par un organisme vivant soumis à 1 gray de rayons X d une énergie de 250… …   Encyclopédie Universelle

  • Sievert — bezeichnet Sievert (Einheit), Sv, Einheit der Äquivalentdosis Sievert (Vorname), männlicher Vorname Sievert (Familienname), ein Familienname Diese Seite ist eine Begriffsklärung zur Untersche …   Deutsch Wikipedia

  • sievert — (Sv) Unidad de radiación equivalente a una dosis unitaria. El sievert tiene idénticas unidades para el gris y se calcula multiplicando la dosis absorbida por el factor de calidad, número que se ha determinado para comparar de forma precisa las… …   Diccionario médico

  • sievert — (De R. Sievert, 1896 1966, físico sueco). m. Fís. Unidad de dosis equivalente de radiación del Sistema Internacional, igual a un julio por kilogramo. (Símb. Sv) …   Diccionario de la lengua española

  • Sievert — Sievert. См. зиверт. (Источник: «Англо русский толковый словарь генетических терминов». Арефьев В.А., Лисовенко Л.А., Москва: Изд во ВНИРО, 1995 г.) …   Молекулярная биология и генетика. Толковый словарь.

  • Sievert — (Sv) Зиверт (Зв) в системе единиц СИ единица эквивалентной дозы. 1 Зв=1 Дж/кг =100 бэр. Термины атомной энергетики. Концерн Росэнергоатом, 2010 …   Термины атомной энергетики

  • sievert — s. m. [Física] Unidade de medida do Sistema Internacional equivalente a 100 rems (símbolo Sv) …   Dicionário da Língua Portuguesa

  • sievert — (izg. sìvert) m DEFINICIJA fiz. SI jedinica ekvivalentne doze ionizirajućeg zračenja (simbol Sv), (Sv = J/kg) ETIMOLOGIJA prema švedskom radiologu M. Sievertu (1896 1966) …   Hrvatski jezični portal

  • sievert — [sē′vərt] n. the basic unit in the SI system that is used to measure the amount of biological damage caused by various types of ionizing radiation, equal to the dose that produces the same amount of damage in human tissue as one gray of X rays… …   English World dictionary

  • Sievert — Pour les articles homonymes, voir SV. Le sievert (symbole: Sv) est l « unité utilisée pour donner une évaluation de l impact des rayonnements sur l homme » [1] …   Wikipédia en Français

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”