Defence Research and Development Organisation

Defence Research and Development Organisation
Defence Research and Development Organisation
Sanskrit: बलस्य मूलं विज्ञानम्
"Strength's Origin is in Science"[1]
Agency overview
Formed 1958
Headquarters DRDO Bhavan, New Delhi
Employees 30,000 (7,000 scientists)
Annual budget INR10,253.17 crore (US$2.1 billion)(2011-12)[2]
Minister responsible A.K. Antony, Defence Minister of India
Agency executive Dr.V.K.Saraswat, Director General, DRDO and Scientific Adviser(SA) to Defence Minister
DRDO Bhawan, New Delhi, The Headquarters of DRDO

The Defence Research and Development Organisation (DRDO) is a agency of the Republic of India, responsible for the development of technology for use by the military, headquartered in New Delhi, India. It was formed in 1958 by the merger of Technical Development Establishment and the Directorate of Technical Development and Production with the Defence Science Organisation.

DRDO has a network of 52 laboratories which are deeply engaged in developing defence technologies covering various fields, like aeronautics, armaments, electronic and computer sciences, human resource development, life sciences, materials, missiles, combat vehicles development and naval research and development. The organization includes more than 5,000 scientists and about 25,000 other scientific, technical and supporting personnel.



105mm light field gun prototype being shown by Gen Jetley to then Defence Minister Jagjivan Ram.

Defence Research and Development Organisation (DRDO) was established in 1958 by amalagamating Defence Science Organisation and some of the technical development establishments. A separate Department of Defence Research and Development was formed in 1980 which later on administered DRDO and its 50 laboratories/establishments. Most of the time the Defence Research Development Organisation was treated as if it was a vendor and the Army Headquarters or the Air Headquarters were the customers. Because the Army and the Air Force themselves did not have any design or construction responsibility, they tended to treat the designer or Indian industry at par with their corresponding designer in the world market. If they could get a MiG 21 from the world market, they wanted a MiG 21 from DRDO.[3] DRDO started its first major project in surface-to-air missiles (SAM) known as Project Indigo in 1960s. Indigo was discontinued in later years without achieving full success. Project Indigo led to Project Devil, along with Project Valiant, to develop short-range SAM and ICBM in the 1970s. Project Devil itself led to the later development of the Prithvi missile under the Integrated Guided Missile Development Program (IGMDP) in the 1980s. IGMDP was an Indian Ministry of Defence program between the early 1980s and 2007 for the development of a comprehensive range of missiles, including the Agni missile, Prithvi ballistic missile, Akash missile, Trishul missile and Nag Missile. In 2010,then defence minister A.K. Antony ordered the restructing of the Defence Research and Development Organisation (DRDO) to give 'a major boost to defence research in the country and to ensure effective participation of the private sector in defence technology'.The key measures to make DRDO effective in its functioning include the establishment of a Defence Technology Commission with the defence minister as its chairman.[4][5] The programs which were largely managed by DRDO has seen considerable success with many of the systems seeing rapid deployment as well as yielding significant technological benefits.[6] DRDO has many success since its establishment in developing other major systems and critical technologies such as aircraft avionics, UAVs, small arms, artillery systems, EW Systems, tanks and armoured vehicles, sonar systems, command and control systems, missile systems.

In 2009, The P Rama Rao committee, which was formed to revamp the organisation, has said that the major cause for delays and failures of indigenous defence products is DRDO’s tendency to over-estimate its capabilities. The inability of the research body to involve the Armed Forces in developmental projects from the start has been identified as a major area of concern.[7]

The committee recommended to the government that DRDO should undertake all projects in the future on a joint developmental basis and involve foreign partners to imbibe global standards. DRDO’s tendency of overstretching itself to reinvent the wheel has also been noted and the committee has said that foreign help should be taken “without any reservations” in future projects.[7]


DRDO Bhawan.jpg


  • The DRDO is responsible for the ongoing Light Combat Aircraft. The LCA is intended to provide the Indian Air Force with a modern, fly by wire, multi-role fighter, as well as develop the aviation industry in India. The LCA program has allowed DRDO to progress substantially in field of avionics, flight control systems, aircraft propulsion and composite structures, along with aircraft design and development.[8]
  • The DRDO provided key avionics for the Sukhoi Su-30MKI program under the "Vetrivel" program. Systems developed by DRDO include Radar warning receivers, radar and display Computers. DRDO's radar computers, manufactured by HAL are also being fitted into Malaysian Su-30s.
  • The DRDO is part of the Indian Air Force's upgrade programs for its MiG-27 and Sepecat Jaguar combat aircraft upgrades, along with the manufacturer Hindustan Aeronautics Limited. DRDO and HAL have been responsible for the system design and integration of these upgrades, which combine indigenously developed systems along with imported ones. DRDO contributed subsystems like Tarang radar warning receiver, Tempest jammer, core avionics computers, brake parachutes, Cockpit instrumentation and displays.


The DRDO's avionics program has been a success story with its mission computers, radar warning receivers, high accuracy direction finding pods, airborne jammers, flight instrumentation, in use across a wide variety of Indian Air Force aircraft. The organization began developing these various items for its upgrades, and for the LCA project. Variants were then developed for other aircraft. The lead designer in several of these efforts has been DARE, or the Defence Avionics Research Establishment, DRDO's designated mission avionics laboratory. Other laboratories have also chipped in, from the radar specialist LRDE, to Electronic warfare focused DEAL to the ADE, which develops UAVs and flight control systems.

LCA uses DRDO developed avionics

The DRDO is also co-developing more advanced avionics for the Light Combat Aircraft and the IAF's combat fleet. These include a range of powerful Open Architecture computers, better Defensive avionics including modern RWR's, Self protection jammers, Missile approach warning systems and integrated defensive suites, Optronics systems (such as Infrared search and track systems) and navigational systems such as Ring Laser Gyro based Inertial navigational systems. Other items under development include digital Map generators, Helmet mounted displays and Smart multifunctional displays.

Other Hindustan Aeronautics programs

Apart from the aforementioned upgrades, DRDO has also assisted Hindustan Aeronautics with its programs. These include the HAL Dhruv helicopter and the HAL HJT-36. Over a hundred LRU (Line Replaceable Unit)'s in the HJT-36 have come directly from the LCA program. Other duties have included assisting the Indian Air Force with indigenization of spares and equipment. These include both mandatory as well as other items.

Unmanned aerial vehicles

A scaled down model of the Rustom-1 MALE UAV

The DRDO has also developed two unmanned aerial vehicles- the Nishant (Midnight) tactical UAV and the Lakshya (Target) Pilotless Target Aircraft (PTA).[9] The Lakshya PTA has been ordered by all three services for their gunnery target training requirements. Efforts are on to develop the PTA further, with an improved all digital flight control system, and a better turbojet engine.[10] The Nishant is a hydraulically launched short ranged UAV for the tactical battle area. It is currently being evaluated by the Indian Navy and the Indian Paramilitary forces as well.

The DRDO is also going ahead with its plans to develop a new class of UAVs. These draw upon the experience gained via the Nishant program, and will be substantially more capable. Referred to by the HALE (High Altitude Long Endurance) and MALE (Medium Altitude Long Endurance) designations.The MALE UAV has been tentatively named the Rustom,[11] and will feature canards and carry a range of payloads, including optronic, radar, laser designators and ESM. The UAV will have conventional landing and take off capability. The HALE UAV will have features such as SATCOM links, allowing it to be commanded beyond line of sight. Other tentative plans speak of converting the LCA into a UCAV (unmanned combat aerial vehicle), and weaponizing UAVs.

Indigenisation efforts

DRDO has been responsible for the indigenization of key defence stores and equipment.[12] DRDO has assisted Hindustan Aeronautics Ltd and the IAF with the indigenization of spares and assemblies for several aircraft. DRDO laboratories have worked in coordination with academic institutes, the CSIR and even ISRO over projects required for the Indian Air Force and its sister services. DRDO's infrastructure is also utilized by other research organizations in India.


DRDO often cooperates with the state owned Ordnance Factory Board for producing its items. These have led to issues of marginal quality control for some items, and time consuming rectification. Whilst these are common to the introduction of most new weapons systems, the OFB has had issues with maintaining the requisite schedule and quality of manufacture owing to their own structural problems and lack of modernisation. Criticism directed at the OFB is invariably used for the DRDO, since the users often make little distinction between the developer and the manufacturer.[citation needed] OFB has got more access to funding in recent days, and this is believed to have helped the organization meet modern day requirements.

Even so, India's state owned military apparatus meets the bulk of its ammunition. The DRDO has played a vital role in the development of this ability since the role of private organizations in the development of small arms and similar items has been limited. A significant point in case is the INSAS rifle which has been adopted by the Indian Army as its standard battle rifle and is in extensive service. There have been issues with rifle quality in usage under extreme conditions in the cold, the OFB has stated that it will rectify these troubles with higher grade material and strengthening the unit for extreme conditions. Prior troubles were also dealt with in a similar manner.[13] In the meanwhile, the rifle has found favour throughout the army formations and has been ordered in number by other paramilitary units and police forces.[14][15]

In recent years, India's booming economy has allowed the OFB to modernise with more state funding coming its way, to the tune of US$400 million to be invested during 2002-07.[16] The organization hopes that this will allow it to modernise it's infrastructure; it has also begun introducing new items, including a variant of the Ak-47 and reverse engineered versions of the Denel 14/20 mm anti-material rifles.[17]

In the meanwhile, the DRDO has also forged partnerships with several private sector industrial partners, which have allowed it to leverage their strengths. Successful examples of this include the Pinaka MBRL, which has been assisted significantly by two private developers, Larsen and Toubro Ltd. as well as TATA, apart from several other small scale industrial manufacturers.

The DRDO's various projects are as follows:

Small arms

Insas Assault Rifle
  • The INSAS weapon system has become the standard battle rifle for the Indian Army and paramilitary units.[18] Bulk production of a LMG variant commenced in 1998.[19] It has since been selected as the standard assault rifle of the Royal Army of Oman
  • In 2010, DRDO completed the development of Oleo-resin plastic hand grenades (partly derived from the potent Bhut Jholokia chilli found in north-east India), as a less lethal way to control rioters, better tear gas shells and short-range laser dazzlers.[20]

Artillery systems and ammunition

  • A new Long Range Tactical Rocket System, not yet publicly named. The DRDO has commenced a project to field a long range Tactical strike system, moving on from the successful Pinaka project. The aim is to develop a long range system able to strike at a range of 100–120 km, with each rocket in the system, having a payload of up to 250 kg. The new MBRS's rocket will have a maximum speed of 4.7 mach and will rise to an altitude of 40 km, before hitting its target at 1.8 mach. There is also a move to put a guidance system on the rockets whilst keeping cost constraints in mind. The DRDO has acquired the IMI-Elisra developed trajectory control system and its technology, for use with the Pinaka, and a further development of the system could presumably be used with the new MBRL as well.[22]
  • DRDO's ARDE developed 81 mm and the,[23] 120 mm illuminating bombs [24] and 105 mm illuminating shells [25] for the Indian Army's infantry and Artillery.
  • A 51 mm Light Weight Infantry Platoon Mortar for the Indian Army. A man portable weapon, the 51 mm mortar achieves double the range of 2-inch (51 mm) mortar without any increase in weight. Its new HE bomb uses pre-fragmentation technology to achieve vastly improved lethality vis a vis a conventional bomb. Besides HE, a family of ammunition consisting of smoke, illuminating and practice bombs has also been developed.[26] The weapon system is under production at Ordnance Factories.[27]
  • Proximity fuses for missiles and artillery shells. Proximity fuses are used with artillery shells for "air bursts" against entrenched troops and in anti-aircraft and anti-missile roles as well.[26]
  • Training devices: These include a mortar training device for the 81 mm mortar used by the infantry, a mortar training device for the 120 mm mortar used by the artillery, and a 0.50-inch (13 mm) subcalibre training device for 105 mm Vijayanta tank gun.[26]
  • The Indian Field Gun, a 105 mm field gun was developed for the Indian Army and is in production.[28] This was a significant challenge for the OFB, and various issues were faced with its manufacture including reliability issues and metallurgical problems. These were rectified over time.
  • Submerged Signal Ejector cartridges (SSE), limpet mines, short range anti-submarine rockets (with HE and practice warheads), the Indian Sea Mine which can be deployed against ships and submarines both. The DRDO also designed short and medium range ECM rockets which deploy chaff to decoy away anti-ship homing missiles. In a similar vein, they also developed a 3 in (76.2 mm) PFHE shell, prefragmented and with a proximity fuse,[29] for use against anti-ship missiles and other targets, by the Navy. All these items are in production.[26][30]
  • For the Indian Air Force, DRDO has developed Retarder Tail Units and fuze systems for the 450 kg bomb used by strike aircraft, 68 mm "Arrow" rockets (HE, Practice and HEAT) for rocket pods used in an air to ground and even air to air (if need be), a 450 kg high speed low drag (HSLD) bomb and practice bombs (which mimic different projectiles with the addition of suitable drag plates) and escape aid cartridges for Air Force aircraft. All these items are in production.[26][30]

Tank armament

DRDO's ARDE also developed other critical systems, such as the Arjun Main Battle Tank's 120 mm rifled main gun and is presently engaged inxx the development of the armament for the Future IFV, the "Abhay". The DRDO is also a member of the trials teams for the T-72 upgrade and its Fire control systems. Earlier on, the DRDO also upgraded the Vijayanta medium tank with new fire control computers.

Electronics and computer sciences & Laser Science & Technology Centre

Electronic warfare

EW systems for the Army
  • is India's largest electronic warfare system. It is a land based EW project, consisting of 145 vehicles. The Samyukta consists of ESM and ECM stations for both communication and non-com (radar etc.) systems. The Indian Army has ordered that it's Signal Corps being a prime contributor in the design and development stage, along with the DRDO's DLRL. The scale of this venture is substantial- it comprises COMINT and ELINT stations which monitor different bands for both voice/ data as well as radar transmissions, as well as jam them. In contrast to other systems, many of which perform some of the functions of the Samyukta, the latter is an integrated system, which can perform the most critical battlefield EW tasks in both COM and Non-COM roles. The system will be the first of its type in terms of its magnitude and capability, in the Army. Its individual modules can also be operated independently.[31] A follow on system known as Sauhard is under development.[32]
  • The Safari IED suppression system for the army and paramilitary forces, plus the Sujav ESM system meant for high accuracy direction finding and jamming of communication transceivers.[33]
EW systems for the Air Force
  • Radar warning receivers for the Indian Air Force of the Tarang (wave) series. These have been selected for most of the Indian Air Force's aircraft such as for the MiG-21 Upgrade (Bison Upgrade), MiG-29, Su-30 MKI, MiG- 27 Upgrade, Jaguar Upgrade as well as self protection upgrades for the transport fleet. The Tranquil RWR for MiG -23s (superseded by the Tarang project) and the Tempest jamming system for the Air Force's MiG's. The latest variant of the Tempest jamming system is capable of noise, barrage, as well as deception jamming as it makes use of DRFM. The DRDO has also developed a High Accuracy Direction Finding system (HADF) for the Indian Air Force's Su-30 MKIs which are fitted in the modular "Siva" pod capable of supersonic carriage.[34] This HADF pod is meant to cue Kh-31 Anti radiation missiles used by the Su-30 MKI for SEAD (Suppression of Enemy Air Defences).
  • DRDO stated in 2009 that its latest Radar Warning Receiver for the Indian Air Force, the R118, had gone into production. The R118 can also sensor fuse data from different sensors such as the aircraft radar, missile/laser warning systems and present the unified data on the multi-function display. The DRDO also noted that its new Radar Warner Jammer systems (RWJ) were at an advanced stage of development, and would be submitted for trials.The RWJ is capable of detecting all foreseen threats, and jamming multiple targets simultaneously. At the same time, another high accuracy ESM system is being developed by the DRDO for the AEW&C project.
  • Other EW projects revealed by the DRDO include the MAWS project (a joint venture by the DRDO and EADS) which leverages EADS hardware and DRDO software to develop MAWS systems for transport, helicopter and fighter fleets. DRDO also has laser warning systems available.
  • A DIRCM (Directed Infra Red Countermeasures) project to field a worldclass DIRCM system intended to protect aircraft from infra Red guided weapons.
  • The DRDO is also developing an all new ESM project in cooperation with the Indian Air Force's Signals Intelligence Directorate, under the name of "Divya Drishti" (Divine Sight). Divya Drishti will field a range of static as well as mobile ESM stations that can "fingerprint" and track multiple airborne targets for mission analysis purposes. The system will be able to intercept a range of radio frequency emissions, whether radar, navigational, communication or electronic countermeasure signals. The various components of the project will be networked via SATCOM links.
  • Additional DRDO EW projects delivered to the Indian Air Force have include the COIN A and COIN B SIGINT stations. DRDO and BEL developed ELINT equipment for the Indian Air Force, installed on the service's Boeing 737s and Hawker Siddeley Avro aircraft. DRDO has also developed a Radar Fingerprinting System for the IAF and the Navy. The Indian Air Force's AEW&C systems currently being developed by the DRDO will also include a comprehensive ESM suite, capable of picking up both radars as well as conduct COMINT (Communications Intelligence).


The DRDO has steadily increased its radar development footprint across a range of systems. The result has been substantial progress in India's ability to design and manufacture high power radar systems of its own design and with locally manufactured components and systems. The path began with the development of short range 2D systems (Indra-1) and has now extended to high power 3D systems intended for strategic purposes (LRTR). Several other projects span the gamut of radar applications, from airborne surveillance (AEW & C) to firecontrol radars (land based, and airborne). The DRDO's productionised as well as production ready radar systems include:

  • INDRA series of 2D radars meant for Army and Air Force use. This was the first high power radar developed by the DRDO, with the Indra -I radar for the Indian Army, followed by Indra Pulse Compression (PC) version for the Indian Air Force, also known as the Indra-II, which is a low level radar to search and track low flying cruise missiles, helicopters and aircraft. These are basically 2D radars which provide range, and azimuth information, and are meant to be used as gapfillers. The Indra 2 PC has pulse compression providing improved range resolution. The series are used both by the Indian Air Force and the Indian Army[35]
  • Rajendra fire control radar for the Akash SAM: The Rajendra is stated to be ready. However, it can be expected that further iterative improvements will nonetheless be made. The Rajendra is a high power, Passive electronically scanned array radar (PESA), with the ability able to guide up to 12 Akash SAMs against aircraft flying at low to medium altitudes. The Rajendra has a detection range of 8o km with 18 km height coverage against small fighter sized targets and is able to track 64 targets, engaging 4 simultaneously, with up to 3 missiles per target. The Rajendra features a fully digital high speed signal processing system with adaptive moving target indicator, coherent signal processing, FFTs, and variable pulse repetition frequency.The entire PESA antenna array can swivel 360 degrees on a rotating platform. This allows the radar antenna to be rapidly repositioned, and even conduct all round surveillance.[36]
  • Central Acquisition Radar, a state of the art planar array, S Band radar operating on the stacked beam principle. With a range of 180 km against fighter sized targets, it can track while scan 200 of them. Its systems are integrated on high mobility, locally built TATRA trucks for the Army and Air Force; however it is meant to be used by all three services. The Planar array was developed by DRDO, whereas the rest of the hardware and signal processing were done locally. Initially developed for the long-running Akash SAM system, seven were ordered by the Indian Air Force for their radar modernization program, and two of another variant were ordered by the Indian Navy for their P-28 Corvettes. The CAR has been a significant success for radar development in India, with its state of the art signal processing hardware.[37][38] The ROHINI is the IAF specific variant while the REVATHI is the Indian Navy specific variant. The ROHINI has a more advanced Indian developed antenna in terms of power handling and beamforming technology while the IREVATH adds two axis stabilisation for operation in naval conditions, as well as extra naval modes.
  • BFSR-SR, a 2D short range Battle Field Surveillance Radar, meant to be manportable.Designed and developed by LRDE, the project was a systematic example of concurrent engineering, with the production agency involved through the design and development stage. This enabled the design to be brought into production quickly.[39][40] The radar continues to progress further in terms of integration, with newer variants being integrated with thermal imagers for visually tracking targets detected by the radar. Up to 10 BFSR-SR can be networked together for network centric operation.It is in use with the Indian Army and the BSF as well as export customers.
  • Super Vision-2000, an airborne 3D naval surveillance radar, meant for helicopters and light transport aircraft. The SV-2000 is a lightweight, yet high performance, slotted array radar operating in the X Band. It can detect sea-surface targets such as a periscope or a vessel, against heavy clutter, and can also be used for navigation, weather mapping and beacon detection. The radar can detect a large vessel at over 100 nautical miles (370 km).It is currently under modification to be fitted to the Advanced Light Helicopter, and the Navy's Do-228's. Variants can be fitted to the Navy's Ka-25's as well.[41] The radar has been inducted by the Indian Navy and a more advanced variant of the Super Vision, known as the XV-2004 is now in production. The XV-2004 is also operational, and features an ISAR, SAR Capability.
  • Long Range Tracking Radar: The LRTR a 3D AESA was developed with assistance from Elta of Israel, and is similar to Elta's proven GreenPine long range Active Array radar. The DRDO developed the signal processing and software for tracking high speed ballistic missile targets as well as introduced more ruggedization. The radar uses mostly Indian designed and manufactured components such as its critical high power, L Band Transmit-Receive modules plus the other enabling technologies necessary for active phased array radars.The LRTR can track 200 targets and had a range of above 500 km and can detect Intermediate Range Ballistic Missiles, and that India now had the capability to manufacture these radars on its own.The LRTR would be amongst the key elements of the Indian ABM system; DRDO would provide the technology to private and public manufacturers to make these high power systems.[42]
  • 3D Multi Function Control Radar: A substantial project by itself, the MFCR was developed as part of the Indian anti-ballistic missile program in cooperation with THALES of France. The MFCR is an active phased array radar and complements the Long Range Tracking Radar, for intercepting ballistic missiles. The MFCR will also serve as the fire control radar for the AAD second tier missile system of the ABM program. The AAD has a supplementary role against aircraft as well, and is to engage missiles and aircraft up to an altitude of 30 km. The MFCR fills out the final part of the DRDO's radar development spectrum, and allows India to manufacture long range 3D radars that can act as the nodes of an Air Defence Ground Environment system. As with the LRTR, the MFCR was used successfully in BMD interception effort.
  • 2D Low Level Lightweight Radar (LLLR) for the Army, which require many of these units for gapfilling in mountainous terrain. The Indian Air Force will also acquire the same for key airbases. The LLLR is a 2D radar with a range of 40 km against a 2Sq Mtr target, intended as a gapfiller to plug detection gaps versus low level aircraft in an integrated Air Defence Ground network. The LLLR makes use of Indra-2 technology, namely a similar antenna array, but has roughly half the range and is much smaller and a far more portable unit. The LLLR can track while scan 100 targets and provide details about their speed, azimuth and range to the operator. The LLLR makes use of the BFSR-SR experience and many of the subsystem providers are the same. Multiple LLLRs can be networked together. The LLLR is meant to detect low level intruders, and will alert Army Air Defence fire control units to cue their weapon systems.[43] A 3D LLLR was also revealed in 2008, with the designation "Aslesha".
  • 3D Short Range Radar for the Indian Air Force - ASLESHA: The ASLESHA radars have a range of approximately 50 km against small fighter-sized targets and will be able to determine their range, speed, azimuth and height. This radar will enable the Indian Air Force Air Defence units to accurately track low level intruders. The radar is a semi-active phased array with a 1 meter square aperture. The DRDO was in discussions with the Indian Navy to mount these systems on small ships.
  • Multi-mode radar,a 3D radar is a HAL project of which DRDO's LRDE is a subsystem provider, this project to develop an advanced, lightweight Multimode fire control radar for the LCA Tejas fighter, has faced stiff challenges and been struck by delay. It has now been completed with Elta's (Israel) assistance. The multimode radar is a greater than 100 km range (detection of a small fighter target), 10 target track, two target engage, lightweight system. It has been revealed that an all new combined signal and data processor had been developed, replacing the original separate units. The new unit is much more powerful and makes use of contemporary ADSP processors. The other radar critical hardware has also been developed and validated, however work remains on the software front. The software for the air to air mode has been developed considerably (including search and track while scan in both look up and look down modes) but air to ground modes are being still worked upon. The radar development was shown to be considerably more mature than previously thought. At Aero India 2009, it was revealed that the 3D MMR project has been superseded by the new 3D AESA FCR project led by LRDE. The MMR has been completed with Elta Israel's assistance and now involved Elta EL/M-2032 technology for Air to Ground mapping and targeting. This "hybrid" MMR has been trialled, validated and will be supplied for the initial LCA Tejas fighters of which 2 Squadrons have been ordered.
  • DRDO has indigenised components and improved subsystems of various other license produced radars manufactured at BEL, India, with the help of BEL scientists and other researchers. These improvements include new radar data processors for license produced Signaal radars as well as local radar assemblies replacing the earlier imported ones. Several of these items have better performance than the original systems that they replaced.

Apart from the above, the DRDO has also several other radar systems currently under development or in trials, these include:

  • BEL Weapon Locating Radar:
    A 3D radar successfully developed from the Rajendra fire control radar for the Akash system, this radar uses a passive electronically scanned array to detect multiple targets for fire correction and weapon location. The system has been developed and demonstrated to the Army and orders have been placed[44] In terms of performance, the WLR is stated to be superior to the AN/TPQ-37, several of which were imported by India as an interim system while the WLR got ready.
  • Active Phased Array radar: a 3D radar for fighters, a MMR follow on, the APAR project aims to field a fully fledged operational AESA fire control radar for the expected Mark-2 version of the Light Combat Aircraft. This will be the second airborne AESA program after the AEW&C project and intends to transfer the success DRDO has achieved in the Ground based radar segment to airborne systems.The overall airborne APAR program aims to prevent this technology gap from developing, with a broad based program to bring DRDO up to par with international developers in airborne systems:both fire control and surveillance.
  • Synthetic Aperture & Inverse Synthetic Aperture radars: the DRDO's LRDE is currently working on both SAR and ISAR radars for target detection and classification. These lightweight payloads are intended for both conventional fixed wing, as well as Unmanned Aerial Vehicle applications.
  • Airborne Warning and Control: a new radar based on Active Electronically Scanned Array technology.The aim of the project is to develop inhouse capability for high power AEW&C systems, with the system covering the development of a S Band AESA array. The aircraft will also have datalinks to link fighters plus communicate with the IAF's C3I infrastructure, as well as a local SATCOM (satellite communication system), along with other onboard ESM and COMINT systems.[45]
  • Medium Range Battlefield Surveillance Radar: in 2009, the LRDE (DRDO) noted that it was working on a Long range Battlefield surveillance radar. It is possible that the BFSR-LR project has replaced the earlier this project and the Indian Army will utilize the BEL built ELTA designed BFSR-MR's for Medium Range surveillance while using the LRDE designed systems for Long Range surveillance. The 2D radar will track ground targets and provide key intelligence to the Indian Army's artillery units, with the resultant information available on various tactical networks.
  • 3D Medium Power Radar: a spinoff of the experience gained via the 3D MFCR project, the 3D Medium Power Radar project is intended to field a radar with a range of approximately 300 km against small fighter sized targets. Intended for the Indian Air Force, the radar is an active phased array, and will be transportable. It will play a significant role being used as part of the nodes of the Indian Air Force's enhanced Air Defence Ground Environment System.
  • 3D Tactical Control Radar: a new program, the TCR is an approximately 150 km ranged system for use by the Indian Army and Air Force. A highly mobile unit, it will also employ open architecture to provide easy upgrades, and a variety of modes and capabilities depending on the software fit. The aim of the 3D Medium Power Radar and TCR is to offer systems which can be deployed in a variety of roles, from fire control to surveillance, and not be tied to one role alone.

Command and control software and decision-making tools

  • Tactical tools for wargaming: Shatranj (Chess) and Sangram for the Army, Sagar for the Navy and air war software for the Air Force. All these systems are operational with the respective services.
  • C3I systems: DRDO, in cooperation with BEL and private industry has developed several critical C3I (command, control, communications and intelligence systems) for the services.Under the project "Shakti", the Indian Army aims to spend US$300 million to network all its artillery guns together using the ACCS (Artillery Command and Control System). Developed by DRDO's Centre for Artificial Intelligence & Robotics, the system comprises computers and intelligent terminals connected as a wide area network. Its main subsystems are the artillery computer center, battery computer, remote access terminal and a gun display unit. The ACCS is expected to improve the Army's artillery operations by a factor of 10 and by efficiently networking the artillery units, allowing for more rapid and accurate firepower. The ACCS will also improve the ability of commanders to concentrate that firepower where it is most needed.The DRDO and BEL have also developed a Battle Management system for the Indian Army for its tanks and tactical units.

Other programs in development for the Army include Corps level information and decision making software and tools, intended to link all units together for effective C3I. These systems are in production at DRDO's production partner, Bharat Electronics Limited. These projects are being driven by the Indian Army Corps of Signals. The Indian Army is also moving towards extensive use of battlefield computers. DRDO has also delivered projects such as the Combat Net Radio for enhancing the Army's communication hardware.[46]

  • 'Data management and command and control systems for the Navy have been provided by the DRDO. The Navy is currently engaged in a Naval networking project to network all its ships and shore establishments plus Maritime patrol aircraft and sensors.
  • Radar netting and multi-sensor fusion software for linking the Indian Air Force's network of radars and airbases which have been successfully operationalised. Other systems include sophisticated and highly complex mission planning and C3I systems for Missiles, such as the Agni and Prithvi ballistic missiles, to the Brahmos cruise missile. These systems are common to all three services as all of them utilize different variants of these missiles.
  • Simulators and training tools: DRDO and private industry have collaborated on manufacturing a range of simulators and training devices for the three services, from entry level tests for prospective entrants to the Indian Air Force, to sophisticated simulators for fighter aircraft, transports and helicopters, tanks to gunnery devices.

Computing technologies

DRDO has worked extensively high speed computing given its ramifications for most of its defence projects. These include supercomputers for computational flow dynamics, to dedicated microprocessor designs manufactured in India for flight controllers and the like, to high speed computing boards built around Commercial Off The Shelf (COTS) components, similar to the latest trends in the defence industry.

  • Supercomputing: DRDO's ANURAG developed the PACE+ [47] Supercomputer for strategic purposes for supporting its various programs. The initial version, as detailed in 1995, had the following specifications: The system delivered a sustained performance of more than 960 Mflops (million floating operations per second) for computational fluid dynamics programs. Pace-Plus included 32 advanced computing nodes, each with 64 megabytes(MB) of memory that can be expanded up to 256MB and a powerful front-end processor which is a hyperSPARC with a speed of 66/90/100 megahertz (MHz). Besides fluid dynamics, these high-speed computer systems were used in areas such as vision, medical imaging, signal processing, molecular modeling, neural networks and finite element analysis. The latest variant of the PACE series is the PACE ++, a 128 node parallel processing system. With a front-end processor, it has a distributed memory and message passing system. Under Project Chitra, the DRDO is implementing a system with a computational speed of 2-3 Teraflops utilizing commercial off the shelf components and the Open Source Linux Operating System.
  • Processors and other critical items: DRDO has developed a range of processors and application specific integrated circuits for its critical projects. Many of these systems are modular, in the sense that they can be reused across different projects. These include "Pythagoras processor" to convert cartesian to polar coordinates, ANUCO, a floating point coprocessor and several others, including the ANUPAMA 32-bit processor, which is being used in several DRDO projects.[48]
  • Electronic components: one of the endeavours undertaken by the DRDO has been to create a substantial local design and development capability within India, both in the private and public sectors. This policy has led to several hard to obtain or otherwise denied items, being designed and manufactured in India. These include components such as radar subsystems (product specific travelling wave tubes) to components necessary for electronic warfare and other cutting edge projects. Today, there are a range of firms across India, which design and manufacture key components for DRDO, allowing it to source locally for quite a substantial chunk of its procurement. The DRDO has also endeavoured to use COTS (Commercial off the shelf) processors and technology, and follow Open Architecture standards, wherever possible, in order to pre-empt obsolescence issues and follow industry practise. One significant example is the development of an Open Architecture computer for the Light Combat Aircraft, based on the PowerPC architecture and VME64 standard. The earlier Mission computer utilizing Intel 486 DX chips has already seen success, with variants being present on the Su-30 MKI, Jaguar and MiG-27 Upgrades for the Indian Air Force.[49]

Laser Science & Technology Centre (LASTEC)

NEW DELHI: Move aside Darth Vader and Luke Skywalker, DRDO is trying to develop its own set of Laser weapons. From laser dazzlers to control rioting crowds to high-powered lasers to destroy incoming missiles, DRDO is working on a slew of directed energy weapons (DEWs).

"Lasers are weapons of the future. We can, for instance, use laser beams to shoot down an enemy missile in its boost or terminal phase, said DRDO's Laser Science & Technology Centre (LASTEC) director Anil Kumar Maini, talking to TOI on Monday.

Incidentally, DRDO chief V K Saraswat himself has identified DEWs, along with space security, cyber-security and hypersonic vehicles, as focus areas in the years ahead. "LASTEC has the mandate to develop DEWs for armed forces, said DRDO's chief controller (electronics & computer sciences) R Sreehari Rao.

While conventional weapons use kinetic or chemical energy of missiles or other projectiles to destroy targets, DEWs decimate them by bombarding with subatomic particles or electromagnetic waves at the speed of light. Apart from the speed-of-light delivery, laser DEWs cause minimal collateral damage.

The defence ministry's recent "technology perspective and capability roadmap identifies DEWs and ASAT (anti-satellite) weapons as thrust areas over the next 15 years, as was first reported by TOI.

The aim is to develop laser-based weapons, deployed on airborne as well as seaborne platforms, which can intercept missiles soon after they are launched towards India in the boost phase itself. These will be part of the fledgling ballistic missile defence system being currently developed by DRDO.

The US, incidentally, is already conducting tests of high-powered laser weapons on a modified 747 jumbo jet, the ALTB (airborne laser testbed), which direct lethal amounts of directed energy to destroy ballistic missiles during their boost phase.

It will, of course, take India several years to even conduct such tests. For now, LASTEC is developing "a 25-kilowatt laser system to hit a missile during its terminal phase at a distance of 5–7 km. "All you need is to heat the missile skin to 200-300 degree and the warhead inside will detonate, said Maini.

LASTEC is also working on a vehicle-mounted "gas dynamic laser-based DEW system, under project Aditya, which should be ready in three years. "But Aditya is just a technology demonstrator to prove beam control technology. Ultimately, we have to develop solid-state lasers, said Maini.

Even countries like US have now shifted their focus to the more efficient, smaller and lighter solid-state laser DEWs since chemical (dye and gas) lasers are dogged by size, weight and logistical problems.


Non-Lethal systems:

-- Hand-held laser dazzler to disorient adversaries, without collateral damage. 50-metre range. Status: Ready.

-- Crowd-control dazzlers mounted on vehicles to dispel rioting mobs. 250-metre range. Status: take 2 years more.

-- Laser-based ordnance disposal system, which can be used to neutralise IEDs and other explosives from a distance. Status: trials begin in 18 months.

Lethal Systems:

-- Air defence dazzlers to take on enemy aircraft and helicopters. 10-km range. Status: take 2 years more.

-- 25-kilowatt laser systems to destroy missiles during their terminal phase. 5 to 7-km range. Status: take five years more.

-- At least 100-kilowatt solid-state laser systems, mounted on aircraft and ships, to destroy missiles in their boost phase itself. Status: will take a decade.

Read more: DRDO’s next: Star Wars-like weapons -The Times of India

Combat vehicles & engineering

Tanks and armoured vehicles

T-72 Ajeya of the Indian Army
  • Ajeya upgrade: upgrade for the T-72 fleet, incorporating a mix of locally made and imported subsystems.250 have been ordered. Local systems include the DRDO developed ERA, the DRDO developed, laser warning system, and the combat net radio, the Bharat Electronics Limited advanced land navigation system consisting of fibre optic gyros and GPS, NBC protection, DRDO's fire detection and suppression system amongst other items. Imported systems include a compact thermal imager and fire control system, as well as a new 1000 hp engine.
  • Anti-tank ammunition: DRDO develops the FSAPDS for the 125 mm calibre, meant for India's T-72 tanks.The 120 mm FSAPDS and HESH rounds for the Arjun tank, and 105 mm FSAPDS rounds for the Army's Vijayanta and T-55 tanks.[50] Significant amounts of 125 mm anti-tank rounds manufactured by the Ordnance Factory Board were rejected.The problems were traced to improper packaging of the charges by the OFB, leading to propellant leakage during storage at high temperatures.The locally developed rounds were rectified, and requalified. Production of these local rounds was then restarted. Since 2001, over 1,30,000 rounds have been manufactured by the OFB.The DRDO said in 2005 it had developed a Mk2 version of the 125 mm round, with higher power propellant for greater penetration. In parallel,the OFB announced in 2006 that it was also manufacturing 125 mm IMI (Israel Military Industries) rounds. It is believed that this might assist in improving the OFB's APFSDS manufacturing capability. These rounds and presumably the Mk2 round, will be used by both the T-72 and T-90 formations in the Indian Army.[51][52]
  • Various armour technologies and associated subsystems from composite armour and explosive reactive armour, to Radios (Combat Net Radio, frequency hopping, with encryption), to Battle Management systems. Fire-control systems, currently in production at BEL for the Arjun tanks. The first batch in production have a hybrid Sagem-DRDO system, with Sagem sights and local fire control computer.[53]
  • Arjun tank: in production at HVF Avadi, the Arjuns penultimate design has been accepted by the Indian Army,The Arjun is now in series production.
    The Arjun follows a template similar to the tanks developed by western nations, with containerised ammunition storage, with blast off panels, heavy Composite armour, a 120 mm gun (rifled as compared to smoothbore on most other tanks), a modern FCS with high hit probability, and a 1,400 horsepower (1,000 kW) engine and a 4 man crew.
    Originally designed in response to a possible Pakistani acquisition of the M1 Abrams, the project fell into disfavour once it became clear that Pakistan was instead standardising on cheaper (and less capable) T type tanks[citation needed]. In such a milieu, acquiring the Arjun in huge numbers is simply unnecessary for the Indian Army,given the additional logistic costs of standardising on an entirely new type.The Indian Army ordered 124 units in 2000 and an additional 124 units in 2010[54][55] and work on Mark-II version of the tank has commenced.[56]

Modification of BMP-2 series

India licenses manufactures the BMP-2 with local components. The vehicle has been used as the basis for several locally designed modifications, ranging from missile launchers to engineering support vehicles. The DRDO and it's various labs have been instrumental in developing these mission specific variants for the Indian Army.

  • Armoured Engineering Reconnaissance Vehicle for enabling the combat engineers to acquire and record terrain survey data. The instruments mounted on the amphibious vehicle viz. BMP-II are capable of measuring width of obstacle, bed profile, water depth and bearing capacity of soil of the obstacle in real time which are helpful in taking decisions regarding laying of tracks or building of bridges.[57]
  • Armoured Amphibious Dozer with amphibious capability for earth moving operations in different terrain for preparation of bridging sites, clearing obstacles and debris and to fill craters. Self-recovery of the vehicle is also a built-in feature using a rocket-propelled anchor.[58]
  • Carrier Mortar Tracked: designed to mount and fire an 81 mm mortar from within vehicle. Capacity to fire from 40° to 85° and traverse 24° on either side; 108 rounds of mortar ammunition stowed.[59]
  • Armoured Ambulance based on the BMP-2 vehicle.
  • NBC Reconnaissance Vehicle: this variant has instrumentation for determining NBC contamination, as well as bringing back samples. The vehicle includes a plow for scooping up soil samples, to instrumentation such as a radiation dosimeter amongst other key items.

Other engineering vehicles

  • Bridge Layer Tank: claimed by DRDO to be the amongst the best bridging systems available on a medium class tank. It has an option to carry a 20 m or a 22 m class 70 MLC bridge, which can be negotiated by all tanks in service with Indian Army.
  • Amphibious Floating Bridge and Ferry System intended for transporting heavy armour, troops and engineering equipment across large and deep water obstacles.The vehicle can convert to a fully decked bridge configuration of length 28.4 metres, in 9 minutes. Two more vehicles can be joined in tandem to form a floating bridge of length 105 m, in 30 minutes. The bridge superstructure is integrated with floats (shown inflated) to provide stability and additional buoyancy.The vehicle is also capable of retracting its wheels for use as a grounded bridge/ramp for high banks.[60]
  • Arjun Bridge Layer Tank: the BLT-Arjun is an all-new design with a scissor type bridge laying method, which helps it avoid detection from afar. It uses the chassis of the Arjun tank and can take higher weights than the BLT-72.[61]
  • Sarvatra Bridge layer: the bridge can be deployed over water and land obstacles to provide 75 meters of bridge-length for battle tanks, supply convoys and troops. The system consists of a light aluminum alloy scissors bridge and was approved for production in March 2000 trials. One complete set of the multi span mobile bridging system includes five truck-mounted units with a bridge-span of 15 meters each. The system is designed to take the weight of the Arjun, by far the heaviest vehicle in the Army’s inventory.Microprocessor based control system reduces the number of personnel required to deploy and operationalize the bridge. The bridging equipment is carried on a Tatra Kolos chassis and the system is built by Bharat Earth Movers Ltd (BEML).[62]
  • Mobile Decontamination System: with the NBC aspect of the battlefield in mind, the DRDO developed a Tatra vehicle based Mobile Decontamination system, for decontamination of personnel, clothing, equipment, vehicles & terrain during war. The main sub-systems of mobile decontamination system are: pre-wash, chemical wash and post wash systems respectively. The pre-wash system consists of a 3000 litre stainless steel water tank and a fast suction pump. A high-pressure jet with a capacity of 3400 l/hour and a low-pressure jet with a capacity of 900 l/hour and 1600 l/hour are included. The chemical wash system is capable of mixing two powders and two liquids with variable feed rates and has a five litre per minute slurry emulsion flow rate. The post wash system consists of a high-pressure hot water jet, a hot water shower for personnel and provision of steam for decontamination of clothing.The decontamination systems have been introduced into the services.[63] The system is under production for the Army at DRDO's partnering firms, with the DRDO itself manufacturing the pilot batch.[64]

In development

  • Abhay IFV: an IFV design in prototype form. Named the "Abhay" (Fearless), this IFV will have a 40 mm gun based on the proven Bofors L70 (Armour piercing and explosive rounds), a firecontrol system derived from the Arjun MBT project with a thermal imager, all-electric turret and gun stabilization, a locally designed FLAME launcher for locally manufactured Konkurs-M anti-tank missiles, and an Indian diesel engine. The armour will be lightweight composite.
  • Tank-Ex: a project to mount Arjun's turret on a T-72 chassis to combine high firepower with a low silhouette.This is a DRDO initiative and not per a specific Army demand.Reports emerged in 2008 that the Indian Army has rejected the tank[65] with two prototypes built.
  • Armoured vehicle for Paramilitary forces: a wheeled armoured vehicle, the AVP was displayed at Defexpo-2006. The AVP has armoured glass windows and firing ports, as well as provision for heavier caliber small arms, and crowd control equipment.Currently a prototype stage.
  • Mining and De-mining equipment: the Self Propelled Mine Burier has been developed by the DRDO for a requirement projected by the Indian Army, its an automated mine laying system developed on a high mobility vehicle and is currently in trials. The Counter-Mine flail, is a vehicle built upon the T-72 chassis, and has a series of fast moving flails to destroy mines. A prototype has been displayed.
  • Remotely Operated Vehicle (ROV): DRDO Daksh tracked robotic vehicle with staircase climbing ability has been developed and is particularly intended for remote explosion of explosive devices. The ROV is carried in a specially designed carrier vehicle with additional armament and firing ports. The ROV itself is fairly sophisticated, with provision to carry various optronic payloads, an articulated gripper to pick up objects, an ability to traverse difficult terrain including staircases, as well as an integral waterjet projector to blow up explosive packages.After the ROV completed user trials, it would be inducted by the Indian Army for explosives handling and defusing.[66]

Naval research and development


DRDO, BEL and the Indian Navy have developed and productionized a range of Sonars and related systems for the Indian Navy's frontline combat ships.

The Shivalik class of frigates contain significant DRDO developed systems

These include the:

  • APSOH (Advanced Panoramic SOnar Hull mounted),
  • HUMVAD (Hull Mounted Variable Depth sonar),
  • HUMSA (Follow on to the APSOH series; the acronym HUMSA stands for Hull Mounted Sonar Array),
  • Nagan (Towed Array Sonar),
  • Panchendriya (Submarine sonar and fire control system).

Other sonars such as the airborne sonar Mihir, are in trials, whilst work is proceeding apace on a new generation of sonars. Sonars may be considered one of DRDO's most successful achievements as the Indian Navy's most powerful ships rely on DRDO made sonars. The standard fit for a frontline Naval ship would include the HUMSA-NG hull mounted sonar, and the Nagan towed array sonar. The Mihir, is a dunking sonar meant for use by the Naval ALH, working in conjunction with its Tadpole sonobuoy. The Panchendriya is in production for the Kilo class submarine upgrades.[67][68][69]


DRDO is currently engaged in developing multiple torpedo designs. These include a lightweight torpedo that has been accepted by the Navy and cleared for production [70]). Other projects include the heavy weight wire-guided torpedo called the Varunastra and the Thakshak thermal torpedo suitable for use against both ships and submarines. The electrically powered Varunastra is now stated to be also in production. The DRDO also developed and productionised a microprocessor controlled triple tube torpedo launcher for the Indian Navy as well as a towed torpedo decoy.[71][72]

Shyena is an advanced experimental torpedo developed by the Naval Scientific and Technological Laboratory, India's Defence Research and Development Organisation (DRDO) wing. Development was started in 1990.

Other projects

These have included indigenisation of various components (for instance, adsorbent material for submarines, radar components, naval ship signature reduction efforts and materials technology). DRDO has played a significant role in the development of warship grade steel in India and its productionisation. DRDO has also assisted private industry in developing EW trainers, ship simulators for training and health monitoring systems for onboard equipment. Other equipment for the Navy includes underwater telephone sets, and VLF communication equipment, for the Navy's submarines. DRDO's IRDE has also developed optronic fire control systems for the Navy's and the Coast Guard's ships.[73]

Information command and control systems

DRDO's labs have been part of projects to develop sophisticated command and control systems for the Navy, such as the EMCCA (Equipment Modular for Command and Control Application) which ties together various sensors and data systems. The EMCCA system gives commanders on the ship a consolidated tactical picture and adds to the ship’s maritime combat power.[74]

DRDO labs are also engaged in supporting the Navy's ambitious naval enterprise wide networking system, a program to link all naval assets together via datalinks, for sharing tactical information.

Mines and targets

Three kinds of mines, processor based mine, moored mine and processor based exercise mine are in production for the Navy . Targets developed for the Navy include a static target called the Versatile Acoustic target and a mobile target called the programmable deep mobile target (PDMT).

In development
  • A Submarine Escape set, used by crew to escape from abandoned submarines. The set consists of breathing apparatus and Hydro-suit.
  • New generation Sonars and EW equipment.
  • Heavyweight torpedoes, underwater remotely operated vehicles, improved signature reduction technology for naval applications.

Missile systems

Integrated Guided Missile Development Program (IGMDP)

The IGMDP was launched by the Indian Government to develop a local missile design and development ability, and manufacture a range of missile systems for the three defence services.

The IGMDP has seen significant success in its two most important constituents- the Agni missile and the Prithvi missile systems, while two other programs, the Akash SAM and the anti-tank Nag Missile have seen significant orders. The Trishul missile, a program to develop a tri-service short range SAM faced persistent problems throughout its development, and was shut down in 2007.

IGMDP ballistic missiles
  • Prithvi: The Prithvi missile are a range of SRBMs produced for the Indian Air Force and Army; a variant for the Navy has been deployed on Sukanya class patrol vessel. Another submarine launched variant known as the K-15 is under development. The Prithvi is an extremely accurate liquid fuelled missile with a range of up to 350 km. While relatively inexpensive and accurate, with a good payload, its logistics footprint is high, on account of it being liquid fuelled.[75]
The Agni-II missile
  • Agni missiles: The Agni are a range of MRBMs, IRBMs, ICBM meant for long range deterrence. The Agni-III is the newest version and has the longest range of up to 5,500 km (3,418 mi). The Agni-I and Agni-II have been productionized, although exact numbers remain classified.

First trials of the Agni-III saw problems and the missile test did not meet its objectives. The second test was successful.Further tests of the Agni-III are planned to validate the missile and its subsystems, which include new propellant and guidance systems, a new re-entry vehicle and other improvements.[76]

Akash SAM

The Akash ( Sky in English) is a medium range surface to air missile system consisting of the command guided ramjet powered Akash along with the dedicated service specific launchers, battery control radar (the Rajendra Block III), a Central Acquisition radar, battery and group control centers.[13].[77] The Akash project has yielded spinoffs like the Central Acquisition radar and Weapon Locating radar.

The Akash system cleared its user trials with the Indian Air Force in 2007. The user trials had the Akash intercept flying targets at ITR, Chandipur. The Akash missile successfully hit its targets in all of the tests.[78] The Indian Air force has since been satisfied with the performance of the missile and ordered two squadrons of the Akash, with a squadron having eight launchers[79][80][81]

The Indian Air Force placed an order for an additional six squadrons of the Akash SAM in 2010, with an order of 750 missiles (125 per squadron).This order makes a total of a 1000 Akash SAMs on order for the Indian Air Force for eight squadrons.[82]

In June 2010, the Defence Acquisition Council (DAC) placed an order of the Akash missile system, valued at INR12,500 crore (US$2.5 billion). Bharat Dynamics Ltd (BDL) will be the system integrator and nodal production agency for the Akash Army variant.

Trishul SAM

The Trishul (Trident in English) is a short range SAM meant for the Indian Army, Air Force and Navy. The Trishul project relied on equipment already in service with the Indian services, to drive down logistics costs, and reduce program development costs and development time. The Army variant, relied on a locally modified variant of the Signaal (now Thales) Flycatcher radar, integrated into a single launcher with a four missile pack, along with separate electronics for missile guidance. The Air Force variant separated the missile launchers on Kolos Tatra trucks, locally manufactured by India's BEML. The Naval variant was the most ambitious, with a flight control system with an integrated radar altimeter to intercept sea skimming missiles. The Trishul's guidance was Command Line of Sight with a three beam guidance system, which proved to be the bane of the project and caused repeated failures during trials.

Due to the Trishul's persistent development problems the Indian Air Force, the Indian Army and the Indian Navy began upgrading their existing short range SAM systems or purchasing replacements.The Indian Air Force has since procured batteries of the SPYDER SAM system [83] and the Indian Army is upgrading its OSA-AKM/ SA-8 systems with Polish assistance.[84] The Indian Navy has also moved on to the Barak SAM system.[85]

The Trishul program was effectively closed down in 2006 It has been reported that key technologies developed in the program may be utilized in future systems.[86] It has been reported that the experience gained from the Trishul program will be utilized for a brand new SAM known as the Maitri, which will be codeveloped with the European MBDA missile agency.[87]

Nag anti-tank missile

The Nag Anti-tank guided missile (Snake in English) is a guided missile system intended for the Indian Air Force and the Indian Army. The Army will deploy the Nag on ground based launchers and from helicopters, whereas the Air Force will rely on helicopter based units. The Nag has an Imaging Infrared (IIR) seeker and has a top and direct attack capability, with a tandem warhead.

The Army's land missile carrier and launcher,known as the Namica carries several ready to use Nag missiles within, and four Nag missiles in an extendable launcher above the turret. The Namica has its own FLIR based sighting and fire control unit.[88]

The Air Force and Army will also use their Advanced Light helicopters (HAL Dhruv) and the LCH (HAL Light Combat Helicopter) as Nag carriers. The ALH's will be equipped with IRDE (DRDO) developed HELITIS (Heliborne Imaging and Targeting systems) with a combination of a FLIR, Laser range finder, in a stabilized turret for target acquisition and designation. The thermal imager is likely to be imported, but the gimballed turret, stabilization, laser range finder and associated electronics have been designed in India and will be manufactured locally.[89]

The Nag ATGM is regarded as a highly capable missile, even though its development has been protracted, mainly due to the technological challenges of developing a state of the art, IIR sensor equipped top attack missile The Nag is still cheaper than most imported missiles in its category and is earmarked for the Army and Air Force.

The Nag anti-tank guided missile was cleared for production in July 2009 and there are uncorroborated reports since that it may be purchased by Tanzania, Botswana and Morocco.[90] The Nag will complement the existing Russian 9M113 Konkurs Anti-tank guided missile and European missile MILAN,in Indian usage both of which are manufactured under license by Bharat Dynamics Limited.

Brahmos missile

Launched as a joint venture between India's DRDO and the Russian NPO, the BrahMos program aims at creating a range of missile systems derived from the Yakhont missile system. Named the "BrahMos" after the Brahmaputra and the Moskva rivers, the project has been highly successful.

The Indian Navy has ordered the BrahMos Naval version, both slant launched and vertically launched, for its ships, with the Indian Army ordering two regiments worth of Land launched missiles for long range strike, and an air launched version is in development for the Indian Air Force's Su-30 MKI's and the Navy's Tu-142 long range aircraft.

The DRDO has been responsible for the Navigational systems on the BrahMos, aspects of its propulsion, airframe and seeker, plus its Fire Control Systems, Mobile Command posts and Transporter Erector Launcher.[91][92]

The hypersonic Brahmos 2 is to be developed as a follow on to the original Brahmos. The missile would still follow the guidelines of the MTCR but would fly at speeds of 5-7 Mach.[93] A five year development timeframe is anticipated.[94]


The Shaurya missile is speculated to be the land version of the submarine launched K-15 Sagarika missile, although DRDO officials have reportedly denied its connection with the K-15 program. Similar to the BrahMos, Shaurya is stored in a composite canister, which makes it much easier to store for long periods without maintenance as well as to handle and transport. It also houses the gas generator to eject the missile from the canister before its solid propellant motors take over to hurl it at the intended target.

Shaurya missiles can remain hidden or camouflaged in underground silos from enemy surveillance or satellites till they are fired from the special storage-cum-launch canisters.The Shaurya system will require some more tests before it becomes fully operational in two-three years. Moreover, defense scientists say the high-speed, two-stage Shaurya has high maneuverability which also makes it less vulnerable to existing anti-missile defence systems.

It can be easily transported by road. The missile, encased in a canister, is mounted on a single vehicle, which has only a driver’s cabin, and the vehicle itself is the launch platform. This “single vehicle solution” reduces its signature – it cannot be easily detected by satellites – and makes its deployment easy.The gas generator, located at the bottom of the canister produces high pressure gas, which expands and ejects the missile from the tube.

The centerpiece of a host of new technologies incorporated in Shaurya is its ring laser gyroscope and accelerometer. The indigenous ring laser gyroscope, a sophisticated navigation and guidance system developed by the Research Center Imarat (RCI) based in Hyderabad, is a highly classified technology.

In Shaurya test flights the RLG functioned exceptionally well. Its job is to monitor the missile’s position in space when it is flying. The missile’s on board computer will use this information on the missile’s actual position to compare it with the desired position. Based on the difference between the missile’s actual and desired positions, the computer will decide on the optimum path and actuators will command the missile to fly in its desired/targeted position. 3rd test successful on 24 September 2011. reached the speed of 7.5 mach. now, out for production.


The K-15 Sagarika(Sanskrit: सागरिका, Sāgarikā "Oceanic") is a nuclear-capable submarine-launched ballistic missile with a range of 750 kilometres (466 mi).Sagarika can carry a payload of up to 500 kilograms (1,102 lb). Sagarika was developed at the DRDO’s missile complex in Hyderabad.

This missile will form part of the triad in India's nuclear deterrence, and will provide retaliatory nuclear strike capability. The development of this missile (under the title Project K-15) started in 1991. The Indian government first confirmed Sagarika's development seven years later (1998), when the then Defence Minister, George Fernandes, announced it during a press conference.

The development of the underwater missile launcher, known as Project 420 (P420), was completed in 2001 and handed over to the Indian Navy for trials. The missile was successfully test fired six times, and tested to its full range up to three times. The test of missile from a submerged pontoon was conducted in February 2008.

Sagarika is being integrated with India's nuclear-powered Arihant class submarine that began sea trials on the 26th of July 2009.

India also successfully developed a land based variant of Sagarika, known as Shaurya which can be stored in underground silos for longer time and can be launched using gas canisters as booster.

Prahaar Missile

Prahaar is a solid-fueled surface-to-surface guided short-range tactical ballistic missile by DRDO of India. It would be equipped with omni-directional warheads and could be used for hitting both tactical and strategic targetsIt has a range of about 150 km.It was test-fired successfully on 21 July 2011 from the Integrated Test Range (ITR) at Chandipur .[95]


Long range SAM

India and Israel have worked out an agreement to develop and produce the long-range Barak air defence system for both the Indian and the Israeli militaries. The initial co-development funding is about US$350 million, of which IAI will finance 50 per cent. The venture is a tripartite one, between the DRDO, the Indian Navy, and IAI. The missile is referred to as the LRSAM in Indian Government literature, and will have a range of 72 km (45 mi).[96][97] Israel Aircraft Industries refers to the system as Barak-8. IAI states that the missile will have a dual pulse motor, is vertically launched and is able to engage both aircraft and sea skimming missiles. It has a fully active seeker, and the Barak-8 Weapons system is capable of multiple simultaneous engagements. It will have a two way datalink for midcourse update, as well as be able to integrate into larger C3I networks. The primary fire control sensor for the naval Barak-8/LRSAM will be the ELTA MF-STAR Naval AESA radar which Israel claims to be superior to many existing systems worldwide.[98][99][100] The dual pulse rocket motor for the SAM was developed by DRDO, and the prototypes were supplied to IAI for integration with IAI systems to develop the complete missile.

The other variant of the LRSAM will be fielded by the Indian Air Force.Along with the Akash SAM, the LRSAM fills a longer range requirement and both types will complement each other.Each unit of the MR-SAM, would consist of a command and control center, with an acquisition radar, a guidance radar, and 3 launchers with eight missiles each.

A 4-year, US$300 million System Design & Development phase to develop unique system elements and an initial tranche of the land-based missiles is estimated. The radars, C2 centers, TEL's and missiles will be codeveloped by Israel and India. In turn, IAI and its Israeli partners have agreed to transfer all relevant technologies and manufacturing capabilities to India allowing India to manufacture the LRSAM systems locally as well as support them. [101] The Barak-8 next generation long range surface to air missile (LR-SAM) had its first test-flight on 29 May 2010.


Astra is a 80 km (50 mi) class, active radar guided missile meant for beyond visual range air to air combat. Several tests of the missiles basic propulsion and guidance have taken place from land based launchers. Air launched trials will follow thereafter.[102]

Light weight launcher

DRDO has developed an indigenous 7 kg lightweight rocket launcher for Indian army which will replace the 14 kg Carl Gustav Mark-II launcher which is much heavier than DRDO developed rocket launcher.The DRDO has made extensive use of composites in its construction, resulting in the reduced weight.[103]

Anti-Ballistic Missile Defence Project

Unveiled in 2006, the ABM project was a surprise to many observers. While DRDO had revealed some details about the project over the years, its progress had been marked by strict secrecy, and the project itself was unlisted, and not visible among DRDO's other programs. The ABM project has benefited from all the incremental improvements achieved by the DRDO and its associated industrial partners via the long-running and often contentious Akash missile and Trishul missile programs. However, it is a completely new program, with much larger scope and with predominantly new subsystems.

The ABM project has two missiles—namely the AAD (Advanced Air Defence) and PAD (Prithvi Air Defence) missiles. The former is an endo-atmospheric interceptor of new design, which can intercept targets to a height of 30 km (19 mi). Whereas the latter is a modified Prithvi missile, dubbed the Axo-atmospheric interceptor (AXO) with a dedicated second stage kill vehicle for ballistic missile interception, up to an altitude of 80 km (50 mi).

Both these missiles are cued by an active phased array Long Range Tracking Radar, similar to the Elta GreenPine but made with locally developed components, which include DRDO developed transmit/receive modules. The ABM system also makes use of a second radar, known as the Multi-Function Control Radar which assists the LRTR in classifying the target, and can also act as the fire control radar for the AAD missile. The MFCR,like the LRTR is an active phased array system.

The entire system was tested in November 2006, under the Prithvi Air Defence Exercise, when a prototype AXO missile,successfully intercepted another Prithvi missile at a height of 50 km (31 mi).This test was preceded by an "electronic test" in which an actual target missile was launched, but the entire interceptor system was tested electronically, albeit no actual interceptor was launched. This test was successful in its entirety.

The AAD Missile was tested on December 2007 which successfully intercepted a modified Prithvi missile simulating the M-9 and M-11 class of ballistic missiles. Interception happened at an altitude of 15 km (9 mi).[104]

GATET engine

The Defence Research and Development Organisation (DRDO) has launched a INR100 crore (US$20.3 million) project in R&D in the area of gas turbines,a DRDO official said on April 2010.Under the initiative of DRDO's Aeronautics Research and Development Board, R&D projects, which need investment in the region of INR50 lakh (US$101,400) to INR5 crore (US$1 million), would be considered for funding.GTRE was the nodal agency to spearhead this venture,called GATET[105][106][107]

ICBM named "Agni-V"

The Agni-V missile is a ICBM meant for long range deterrence. The Agni-V is the newest version and has the longest range of up to 5000–6000 km. Agni-V will be able to carry multiple warheads and will have countermeasures against Anti-ballistic missile systems.The design of the missile is completed and the first test is expected in the last quarter of 2011. The missile will utilize a canister and will be launched from it. Sixty percent of the missile will be similar to the Agni-III missile. Advanced technologies like ring laser gyroscope and accelerometer will be used in the new missile.[108]

Anti-satellite weapon

India had identified development of ASAT weapons "for electronic or physical destruction of satellites in both LEO (2,000-km altitude above earth's surface) and the higher geosynchronous orbit" as a thrust area in its long-term integrated perspective plan (2012–2027) under the management of DRDO.[109]

Criticism of DRDO

The significant cost and more importantly, time overruns in the DRDO'sprojects such as the Akash, Trishul, Nag, Light Combat Aircraft and the Arjun MBT, are often the subject of virulent criticism of DRDO even as the organization is engaged in completing the programs. It can be said that productionizing these systems and significant orders for them, would be a big shot in the arm for the DRDO as the criticism over these long-running programs often overshadows the organization's work in many other areas.[110]

Earlier, no procurements from abroad could be carried out unless DRDO, which was a member of all sanctioning boards, accepted that the product could not be produced/developed in the country in the required time frame. However, now if the DRDO cannot provide the product within the designated time frame, it allows for imports.

In 2009, The P Rama Rao committee, which was formed to revamp the organisation, has said that the major cause for delays and failures of indigenous defence products is DRDO’s tendency to over-estimate its capabilities. The inability of the research body to involve the Armed Forces in developmental projects from the start has been identified as a major area of concern.

In all of the major projects reviewed by the committee — the Light Combat Aircraft, the Arjun Tank, Kaveri engine and the Akash Surface to Air Missile — it cracked down on the DRDO for the same problems of “over-optimism” and poor planning.[7]

committee analysis by project (as of 2009):[7]

Project: LCA

The present fighter fails to meet requirements set by the Air Force in 1985. Some major requirements that will not be met even after induction include mismatch of aircraft weight to power available from its engines, inadequate turn rates, low supersonic acceleration and achieving maximum angle of attack. The Kaveri engine being developed is nowhere near completion. LCA’s weight has increased 900 kg over the original 9 ton.

committee recommendations

•Accepting LCA in its “sub-optimal performance” as LCA Mk I, IAF to induct 48 of these underpowered fighters.

•However, new teams to be formed immediately to develop a Mk II version that will meet the original requirements identified in 1985.

•The laboratory behind the project — the Aeronautic Development Agency (ADA) — be merged with Hindustan Aeronautics Limited (HAL).

•Take up any future military aerospace programme as a joint venture with foreign aircraft design organisations.

•Kaveri engine project to be taken up as a co-design programme with foreign collaborator.

Project: Arjun Main Battle Tank

•Too much time and effort spent in developing engine for tank without meeting success.

•DRDO looked at outsourcing turret control systems only in mid-’80s after failing to develop it in-house.

•DRDO did not hand over blueprints and specifications to the manufacturing facility on time.

•Tank suffered from poor product quality and sub-optimal performance during development, testing and production stage.

committee recommendations

•DRDO should immediately start work on a Mk II version of the tank to meet the Army’s requirements.

•Advanced version to be built on a joint development model and foreign collaborators should be roped in to gain expertise.

•DRDO needs to work on indigenisation of engine, turret and sight and fire control system that it has completely failed to develop.

Project:Akash Medium Range Surface-to-Air Missile

The work started in 1983, but the system failed to meet all deadlines set for development. While the Air Force will be inducting the system shortly, it is yet to meet the Army’s requirements. The missile system has failed mobility tests in the deserts, where it was too heavy and got stuck in the sand during trials. Cannot negotiate steep sand dunes. Developers over-estimated own capabilities, set unrealistic targets and did not involve the Armed Forces during the development,

committee recommendations

•Should immediately start work on a new Mk II version of the missile.

•DRDO has to make all out effort to involve the Army and Air Force in the development of the new system to meet all their requirements.

•DRDO to take up a joint development approach with foreign collaborator.

See also


  1. ^
  2. ^
  3. ^ John Pike. "Defence Research and Development Organisation (DRDO)". Retrieved 2010-08-31. 
  4. ^ "MoD Announces Major DRDO Restructuring Plan | Defense & Security News at DefenseTalk". 2010-05-17. Retrieved 2010-08-31. 
  5. ^ "defence.professionals". Retrieved 2010-08-31. 
  6. ^ [1][dead link]
  7. ^ a b c d Indian Express. "Defence Research and Development Organisation (DRDO)". Retrieved 2011-07-21. 
  8. ^ LCA workcenters[dead link]
  9. ^ "Indian Army orders twelve Nishants". 2005-02-12. Retrieved 2010-08-31. 
  10. ^ "Gallery of Dhruv, Nishant and armoured vehicles with detailed captions at". Retrieved 2010-08-31. 
  11. ^ Augmenting capabilities, unmanning the sky, pdf file[dead link]
  12. ^ List of products designed by DEBEL[dead link]
  13. ^ [2]
  14. ^ World Affairs Board - View Single Post - INSAS vs AK47 vs M16?
  15. ^ World Affairs Board - View Single Post - INSAS vs AK47 vs M16?
  16. ^ "`Modernisation is a continuous process in OFB'". Retrieved 2010-08-31. 
  17. ^ "DEFEXPO 2004 - Part 5". Retrieved 2010-08-31. 
  18. ^ [3][dead link]
  19. ^ "tribuneindia... Nation". 1998-09-14. Retrieved 2010-08-31. 
  20. ^ "Defence Research and Development Organisation - Wikipedia, the free encyclopedia". 2010-05-29. Retrieved 2010-08-31. 
  21. ^ [4][dead link]
  22. ^ "Defence scientists plan artillery rockets with 100-km range". 2005-09-18. Retrieved 2010-08-31. 
  23. ^ "Ordnance Factory Board". Retrieved 2010-08-31. 
  24. ^ "Ordnance Factory Board". Retrieved 2010-08-31. 
  25. ^ "Ordnance Factory Board". Retrieved 2010-08-31. 
  26. ^ a b c d e [5][dead link]
  27. ^ "Ordnance Factory Board". Retrieved 2010-08-31. 
  28. ^ "Ordnance Factory Board". Retrieved 2010-08-31. 
  29. ^ "Ordnance Factory Board". Retrieved 2010-08-31. 
  30. ^ a b "Indian Ordnance Factories: Ammunition, Explosives, Propellants & Chemicals". Retrieved 2010-08-31. 
  31. ^ "Indian President Abdul Kalam presenting a model of the Samyukta to the then Army chief, NC Vij at its induction ceremony". Retrieved 2010-08-31. 
  32. ^ Samyukta and Samrat: DRDO’s indigenously integrated EW system,ForceIndia june issue[dead link]
  33. ^ "Sujav System visible in the background, image copyright Army Recognition". Retrieved 2010-08-31. 
  34. ^ "Tarang RWR, image copyright". Retrieved 2010-08-31. 
  35. ^ Indra-I radar, image copyright Bharat Rakshak[dead link]
  36. ^ Rajendra Radar, image copyright Bharat Rakshak and DRDO[dead link]
  37. ^ "JPEG image of the 3D CAR, image copyright". Retrieved 2010-08-31. 
  38. ^ 12 Nov, 2008, 10.55PM IST,PTI (2008-11-12). "IAF modernisation". Retrieved 2010-08-31. 
  39. ^ Source: (2005-02-08). "BFSR orders and export push". Retrieved 2010-08-31. 
  40. ^ "BEL to export anti-infiltration radar to Indonesia". 2007-08-06. Retrieved 2010-08-31. 
  41. ^ SV-2000 radar, image copyright DRDO[dead link]
  42. ^ "Details of LRTR from 2004". 2005-04-15. Retrieved 2010-08-31. 
  43. ^ "LLLR Specifications". 2007-01-18. Retrieved 2010-08-31. 
  44. ^ "WLR prototype, image copyright Bharat Rakshak". 2007-01-18. Retrieved 2010-08-31. 
  45. ^ "Aircraft for AWACS to be chosen by the IAF". 2006-01-25. Retrieved 2010-08-31. 
  46. ^ ACCS specifications and details at Bharat-Rakshak[dead link]
  47. ^ "Report from 1995 on the initial PACE system". 1995-05-04. Retrieved 2010-08-31. 
  48. ^ "ANUPAMA processor". Retrieved 2010-08-31. 
  49. ^ LCA avionics[dead link]
  50. ^ [6][dead link]
  51. ^ Press Trust Of India / New Delhi 3 October 2005 (2005-10-03). "OFB manufacturing new 125 mm round from IMI". Retrieved 2010-08-31. [dead link]
  52. ^ MOD Annual Report from 2006 with details on new DRDO projects delivered, including new 125 mm MK2 FSAPDS [PDF File]
  53. ^ BEL IGMS Specifications
  54. ^ "A picture of the Arjun MBT". Retrieved 2010-08-31. 
  55. ^ "Gallery of armoured vehicles at". Retrieved 2010-08-31. 
  56. ^
  57. ^ "AERV handed over to the Army". 2005-11-14. Retrieved 2010-08-31. 
  58. ^ Image of the AAD, copyright DRDO[dead link]
  59. ^ Image of the CMT, copyright PIB
  60. ^ AFFS, Image copyright PIB, Bharat Rakshak[dead link]
  61. ^ "The BLT Arjun followed by the AFFS, Image copyright". Retrieved 2010-08-31. 
  62. ^ "Complete text relating to the Sarvatra available at the Bharat Rakshak Monitor". Retrieved 2010-08-31. 
  63. ^ [7][dead link]
  64. ^ [8][dead link]
  65. ^ [9][dead link]
  66. ^ ROV Development, Indian Defence Ministry press release from December 2006
  67. ^ "Article on DRDO's NPOL". 2005-02-28. Retrieved 2010-08-31. 
  68. ^ "Article on DRDO's sonars". 2002-12-30. Retrieved 2010-08-31. 
  69. ^ Beas specifications with HUMSA[dead link]
  70. ^
  71. ^ Product list at the DRDO's NSTL laboratory[dead link]
  72. ^ "NSTL's Heavy and lightweight electrically propelled torpedoes are under production". 2006-11-08. Retrieved 2010-08-31. 
  73. ^ DRDO's Naval Materials Lab[dead link]
  74. ^ Rahul Singh, TNN, 7 September 2005, 05.34pm IST (2005-09-07). "Article on EMCCA".,curpg-2.cms. Retrieved 2010-08-31. 
  75. ^ Government approves more Prithvi missiles for Air Force
  76. ^ The Road to Indian Missile Development
  77. ^ [10][dead link]
  78. ^ DRDO report on Akash[dead link]
  79. ^ Ajai Shukla / Hyderabad 23 January 2008 (2008-01-23). "Missile mission meets target". Retrieved 2010-08-31. 
  80. ^ "Indian air force to induct indigenous SA missiles_English_Xinhua". 2007-12-27. Retrieved 2010-08-31. 
  81. ^
  82. ^ "Missile boost for BEL". 2010-02-03. Retrieved 2010-08-31. 
  83. ^ "VL MICA Short range Air Defence system". Retrieved 2010-08-31. 
  84. ^ "Army to upgrade OSA-AK system". 2006-01-07. Retrieved 2010-08-31. 
  85. ^ "Navy defends Barak deal". 2001-04-05. Retrieved 2010-08-31. 
  86. ^ TNN, 18 October 2006, 02.39am IST (2006-10-18). "Trishul gets another lease of life".,curpg-1.cms. Retrieved 2010-08-31. 
  87. ^ "Maitri LLQRM". 2007-03-20. Retrieved 2010-08-31. 
  88. ^ Nag ATGM[dead link]
  89. ^ HELITIS on a helicopter mockup[dead link]
  90. ^ IANS. "India seeks to boost military exports to Gulf". 
  91. ^ India makes the world's fastest cruise missile, BrahMos[dead link]
  92. ^ "BrahMos to roll out of Keltec unit in three years, hypersonic version under development". 2007-12-31. Retrieved 2010-08-31. 
  93. ^ "The Hindu News Update Service". 2008-01-28. Retrieved 2010-08-31. 
  94. ^ 31 Dec, 2007, 12.42AM IST,PTI (2007-12-31). "Brahmos-2 to be inducted in five years- Politics/Nation-News-The Economic Times". Retrieved 2010-08-31. 
  95. ^
  96. ^ "India, Israel tie up on next-gen Barak missiles". 2006-02-07. Retrieved 2010-08-31. 
  97. ^ "Annual Reports of the Indian Ministry of Defence". Retrieved 2010-08-31. 
  98. ^ "Israel Aerospace Industries Ltd". Retrieved 2010-08-31. 
  99. ^ "EL/M-2248 MF-STAR Naval Multi-Mission Radar". Retrieved 2010-08-31. 
  100. ^ "Barak-8 MR-SAM Program". Retrieved 2010-08-31. 
  101. ^ 12-Nov-2009 17:03 EST (2009-11-12). "India & Israel Introducing MR-SAM". Defense Industry Daily. Retrieved 2010-08-31. 
  102. ^ ASTRA BVRAAM at Bharat Rakshak, copyright Arun Vishwakarma[dead link]
  103. ^ [11] Defence Research and Development Organisation develops lightweight rocket launcher for Indian Army
  104. ^ [12] Interceptor missile test-fired
  105. ^ "Sakaal Times". Sakaal Times. 2010-04-07. Retrieved 2010-08-31. 
  106. ^ "SahilOnline English News:: Rajdhani derails near Kolkata, sabotage not ruled out - Reflection of the TRUTH". Retrieved 2010-08-31. 
  107. ^ "MACHINIST - DRDO launches Gas Turbine Enabling Technology Initiative [GATET] at GTRE". 2010-04-08. Retrieved 2010-08-31. 
  108. ^ "Agni-V design completed; to be test-fired in 2010". 2008-11-27. Retrieved 2010-08-31. 
  109. ^ Rajat Pandit, TNN, 25 May 2010, 02.00am IST (2010-05-25). "India to gear up for 'star wars' - India - The Times of India". Retrieved 2010-08-31. 
  110. ^ "When the AKASH succeeds it will be a feather in DRDO and industry’s cap". 2006-02-02. Retrieved 2010-08-31. 

External links


Wikimedia Foundation. 2010.

Игры ⚽ Нужен реферат?

Look at other dictionaries:

  • Defence Research and Development Organisation — DRDO Bhawan à New Delhi, le quartier général du DRDO. Le Defence Research and Development Organisation (DRDO) (hindi : रक्षा अनुसन्धान एवं विकास सङ्गठन, Rakṣā Anusandhān evaṃ Vikās Sangaṭhan) est une agence gouvernementale indienne… …   Wikipédia en Français

  • Defence Research and Development Establishment — Defence Research Development Establishment Established 1973 Director Dr. R. Vijayaraghavan Address New Campus: Jhansi Road, Gwalior 474 002, Old Campus: Tansen Rd., Gwalior 474 002 Location Gwalio …   Wikipedia

  • Defence Materials and Stores Research and Development Establishment — (DMSRDE) Established 1929 Field of Research High tech non metallic materials Director Arvind Kumar Saxena Address Post Office GT Road …   Wikipedia

  • Defence Science and Technology Organisation — Not to be confused with Defence Science and Technology Organization. The Defence Science and Technology Organisation (DSTO) is a branch of the Australian Department of Defence which researches and develops technologies for use in the Australian… …   Wikipedia

  • Combat Vehicles Research and Development Establishment — Combat Vehicle Research Development Establishment Established March 1976 Director S. Sivakumar Address Avadi, Chennai 600 054 Location Chennai …   Wikipedia

  • Microwave Tube Research and Development Center — Microwave Tube Research Development Centre Established 1984 Director Dr. Lalit Kumar Staff 125 Address BEL Complex, Jalahalli, Bangalore 560013 Location …   Wikipedia

  • Defence Bioengineering and Electromedical Laboratory — Established April 1982 Director Dr. V.C. Padaki Address P.O. Box #9326, C.V. Raman Nagar, Bangalore 560093 Location Bangalore, Kar …   Wikipedia

  • NATO Research and Technology Organisation — Coordinates: 48°53′17″N 2°16′07″E / 48.88806°N 2.26861°E / 48.88806; 2.26861 …   Wikipedia

  • Defence Science and Technology Laboratory — Agency overview Formed 2 July 2001 Preceding agency Defence Evaluation and Research Agency Jurisdiction Un …   Wikipedia

  • Defence Research Agency — Agency overview Formed 1 April 1991 Preceding agencies Admiralty Research Establishment Royal Aircraft Establishment Aeroplane and Armament Experimental Establishment Royal Armament Research and Development Establishment Royal Signals and Radar… …   Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”