- Mononegavirales
-
Order Mononegavirales Virus classification Group: Group V ((-)ssRNA) Order: Mononegavirales Families Bornaviridae
Filoviridae
Paramyxoviridae
RhabdoviridaeThe order Mononegavirales is the taxonomic home of numerous related viruses. Members of the order that are commonly known are, for instance, Ebola virus, human respiratory syncytial virus, measles virus, mumps virus, Nipah virus, and rabies virus. All of these viruses cause significant disease in humans. Many very important pathogens of nonhuman animals and plants are also members of this order.
Contents
Use of term
The order Mononegavirales is a virological taxon (i.e. a concept) that was created in 1991[1][2] and emended in 1995,[3] 1997,[4] 2000,[5] and 2005.[6] The name Mononegavirales is derived from the Greek adjective μóνος [monos] (alluding to the single-stranded genomes of mononegaviruses), the Latin verb negare (alluding to the negative polarity of these genomes], and the taxonomic suffix -virales (denoting a viral order).[7] The order currently includes the four virus families Bornaviridae, Filoviridae, Paramyxoviridae, and Rhabdoviridae.[6][7][8]
Note
Mononegavirales is pronounced ˌmɒnəˌnɛgəviː’rɑ:lɨz (IPA) or mo-nuh-ne-guh-vee-rah-liz in English phonetic notation.[7] According to the rules for taxon naming established by the International Committee on Taxonomy of Viruses (ICTV), the name Mononegavirales is always to be capitalized, italicized, never abbreviated and to be preceded by the word "order".[6] The names of its physical members (mononegaviruses/mononegavirads) are to be written in lower case, are not italicized and used without articles.[6][7]
Order inclusion criteria
A virus is a member of the order Mononegavirales if[6][7]
- its genome is: a linear, nonsegmented, single-stranded, non-infectious RNA of negative polarity; possesses inverse-complementary 3' and 5' termini; and does not possess a 5' cap, is not polyadenylated, and is not covalently linked to a protein
- its genome has the characteristic gene order 3'-UTR-core protein genes-envelope protein genes-RNA-dependent RNA polymerase gene-5'-UTR
- it produces 5-10 distinct mRNAs from its genome via polar sequential transcription from a single promoter located at the 3' end of the genome
- it replicates by synthesizing complete antigenomes
- it forms infectious helical ribonucleocapsids as the templates for the synthesis of mRNAs, antigenomes, and genomes
- it encodes an RNA-dependent RNA polymerase (RdRp) that is highly homologous to those of other mononegaviruses
- it forms enveloped virions with a molecular mass of 300–1,000 x 106; an S20W of 550–>1,045; and a buoyant density in CsCl of 1.18–1.22 g/cm3
Order organization
The order includes four accepted families that include numerous genera, consisting of many different species. Subfamilies have only been established for the mononegavirus family Paramyxoviridae. The order has expanded considerably during recent years due to the discovery of many novel agents that were found to be phylogenetically diverse from already known mononegaviruses. Novel taxa (genera and/or species) had to be proposed, some of which have by now been accepted by the ICTV, and others that are in various stages of the suggestion/proposal/consideration process. The table below provides an overview of the current composition of the order. Note that this table only lists taxa (concepts), but not their virus members (physical entities).
Order Mononegavirales: families, genera, and species Family name Subfamily name Genus name Species name Unassigned "Nyavirus" (suggested)[9] "Midway virus" (suggested)[9] "Nyamanini virus"* (suggested)[9] Bornaviridae Bornavirus "Avian bornavirus 1" (suggested)[10] "Avian bornavirus 2" (suggested)[10] "Avian bornavirus 3" (suggested)[10] "Avian bornavirus 4" (suggested)[10] "Avian bornavirus 5" (suggested)[10] "Canada geese bornavirus" (suggested)[10] "Canary bornavirus" (suggested)[10] Borna disease virus* Filoviridae "Cuevavirus" (suggested)[7] "Lloviu cuevavirus"* (suggested)[7] Ebolavirus Bundibugyo ebolavirus (accepted)[7] Reston ebolavirus Sudan ebolavirus Taï Forest ebolavirus Zaire ebolavirus* Marburgvirus Marburg marburgvirus* (accepted)[7] Paramyxoviridae Paramyxovirinae Aquaparamyxovirus (accepted)[11][12] Atlantic salmon paramyxovirus* (accepted)[11][12] Avulavirus Avian paramyxovirus 2 Avian paramyxovirus 3 Avian paramyxovirus 4 Avian paramyxovirus 5 Avian paramyxovirus 6 Avian paramyxovirus 7 Avian paramyxovirus 8 Avian paramyxovirus 9 "Avian paramyxovirus 10" (suggested)[13] Newcastle disease virus* Ferlavirus (accepted)[14] Fer-de-Lance paramyxovirus* (accepted)[14] Henipavirus Hendra virus* Nipah virus "Jeilongvirus" (suggested)[15] "Beilong virus" (suggested)[15] "J virus"* (suggested)[15] Morbillivirus Canine distemper virus Cetacean morbillivirus Measles virus* Peste-des-petits-ruminants virus Phocine distemper virus Rinderpest virus Respirovirus Bovine parainfluenza virus 3 Human parainfluenza virus 1 Human parainfluenza virus 3 Sendai virus* Simian virus 10 Rubulavirus Human parainfluenza virus 2 Human parainfluenza virus 4 Mapuera virus "Menangle virus" (tentative) Mumps virus* Parainfluenza virus 5 Porcine rubulavirus Simian virus 41 "Tioman virus" (tentative) "Tuhoko paramyxovirus 1" (suggested)[16] "Tuhoko paramyxovirus 2" (suggested)[16] "Tuhoko paramyxovirus 3" (suggested)[16] "TPMV-like viruses" (suggested)[17] "Tupaia paramyxovirus"* (suggested)[17] Unassigned "'Mossman virus" (suggested)[18] "Nariva virus" (suggested)[19] "Pacific salmon paramyxovirus" (suggested)[20] "Salem virus" (suggested)[21] Pneumovirinae Pneumovirus Human respiratory syncytial virus* Bovine respiratory syncytial virus Murine pneumonia virus Metapneumovirus Avian metapneumovirus* Human metapneumovirus Rhabdoviridae Cytorhabdovirus Barley yellow striate mosaic virus Broccoli necrotic yellows virus Festuca leaf streak virus Lettuce necrotic yellows virus* Lettuce yellow mottle virus Northern cereal mosaic virus Sonchus virus Strawberry crinkle virus Wheat American striate mosaic virus "Dichorhabdovirus" (suggested)[22] "Orchid fleck virus"* (suggested)[22] Ephemerovirus Adelaide River virus Berrimah virus Bovine ephemeral fever virus* "Kimberley virus" (tentative) Kotonkan virus (accepted) "Malakal virus" (tentative) "Obodhiang virus" (proposed) "Puchong virus" (tentative) "Hart Park-like viruses" (suggested) "Flanders virus"* (suggested)[23] "Wongabel virus" (suggested)[23] Lyssavirus Aravan virus Australian bat lyssavirus Duvenhage virus European bat lyssavirus 1 European bat lyssavirus 2 Irkut virus Khujand virus Lagos bat virus Mokola virus Rabies virus* "Rochambeau virus" (tentative) "Shimoni bat virus" (proposed)[24] West Caucasian bat virus Novirhabdovirus "Eel virus B12" (tentative) "Eel virus C26" (tentative) Hirame rhabdovirus Infectious hematopoietic necrosis virus* Snakehead rhabdovirus Viral hemorrhagic septicemia virus Nucleorhabdovirus Datura yellow vein virus Eggplant mottled dwarf virus Maize fine streak virus Maize Iranian mosaic virus (accepted)[25] Maize mosaic virus Potato yellow dwarf virus* Rice yellow stunt virus Sonchus yellow net virus Sowthistle yellow vein virus Taro vein chlorosis virus "Perch rhabdovirus group" (suggested)[26] "Genotype A/Perch rhabdovirus"* (suggested)[26] "Genotype B" (suggested)[26] "Genotype C" (suggested)[26] "Genotype D" (suggested)[26] "Sigmavirus" (proposed)[27] "Culex tritaeniorhynchus rhabdovirus" (suggested)[28] "Drosophila affinis sigmavirus" (proposed)[27] "Drosophila ananassae sigmavirus" (proposed)[27] "Drosophila immigrans sigmavirus" (proposed)[27] "Drosophila melanogaster sigmavirus"* (proposed)[27] "Drosophila obscura sigmavirus" (proposed)[27] "Drosophila tristis sigmavirus" (proposed)[27] "Muscina stabulans sigmavirus" (proposed)[27] "Sinistar-like viruses" (suggested)[26][29] "Siniperca chuatsi rhabdovirus"* (suggested)[29] "TIBV/CPV-like viruses" (suggested)[23] "Coastal Plains virus"* (suggested)[23] "Tibrogargan virus" (suggested)[23] Tupaia virus Vesiculovirus "BeAn 157575 virus"" (tentative) Calchaqui virus Carajas virus Chandipura virus Cocal virus "Eel virus American" (tentative) "eel virus European X" (suggested) "Grey Lodge virus" (tentative) Isfahan virus* "Jurona virus" (tentative) "Klamath virus" (tentative) "Kwatta virus" (tentative) "La Joya virus" (tentative) "Lake trout rhabdovirus" (suggested) "Malpais Spring virus" (tentative) Maraba virus "Mount Elgon bat virus" (tentative) "Perinet virus" (tentative) "Pike fry rhabdovirus" (tentative) Piry virus "Porton virus" (tentative) "Radi virus" (tentative) "Sea trout rhabdovirus" (suggested) Spring viremia of carp virus "Ulcerative disease rhabdovirus" (tentative) Vesicular stomatitis Alagoas virus Vesicular stomatitis Indiana virus* Vesicular stomatitis New Jersey virus "Yug Bogdanovac virus" (tentative) Unassigned "Durham virus" (suggested)[30] Moussa virus (accepted)[31] Ngaingan virus Table legend: "*" denotes type species; "suggested" refers to taxa that have been suggested by individual researchers but that have not been formally proposed to the ICTV; "proposed" refers to taxa that have been formally proposed; "accepted" refers to taxa that have been accepted by the Executive Committee of the ICTV but that have yet to be ratified; and "tentative" refers to tentative taxa listed in the most recent (Eighth) ICTV Report.
Life cycle
The mononegavirus life cycle begins with virion attachment to specific cell-surface receptors, followed by fusion of the virion envelope with cellular membranes and the concomitant release of the virus nucleocapsid into the cytosol. The virus RdRp partially uncoats the nucleocapsid and transcribes the genes into positive-stranded mRNAs, which are then translated into structural and nonstructural proteins. Mononegavirus RdRps bind to a single promoter located at the 3' end of the genome. Transcription either terminates after a gene or continues to the next gene downstream. This means that genes close to the 3' end of the genome are transcribed in the greatest abundance, whereas those toward the 5' end are least likely to be transcribed. The gene order is therefore a simple but effective form of transcriptional regulation. The most abundant protein produced is the nucleoprotein, whose concentration in the cell determines when the RdRp switches from gene transcription to genome replication. Replication results in full-length, positive-stranded antigenomes that are in turn transcribed into negative-stranded virus progeny genome copies. Newly synthesized structural proteins and genomes self-assemble and accumulate near the inside of the cell membrane. Virions bud off from the cell, gaining their envelopes from the cellular membrane they bud from. The mature progeny particles then infect other cells to repeat the cycle.[6]
Paleovirology
Mononegaviruses have a history that dates back several tens of million of years. Mononegavirus "fossils" have been discovered in the form of mononegavirus genes or gene fragments integrated into mammalian genomes. For instance, bornavirus gene "fossils" have been detected in the genomes of bats, fish, hyraxes, marsupials, primates, rodents, ruminants, and elephants.[32][33][34] Filovirus gene "fossils" have been detected in the genomes of bats, rodents, shrews, tenrecs, and marsupials.[35][33][34] A Midway virus "fossil" was found in the genome of zebrafish.[33]. Finally, rhabdovirus "fossils" were found in the genomes of mosquitoes and ticks.[34]
References
- ^ "The order Mononegavirales". Archives of virology 117 (1–2): 137–140. 1991. PMID 2006902.
- ^ Pringle, C. R. (1991), "Order Mononegavirales", in Francki, R. I. B.; Fauquet, C. M.; Knudson, D. L. et al., Classification and Nomenclature of Viruses-Fifth Report of the International Committee on Taxonomy of Viruses. Archives of Virology Supplement, vol. 2, Vienna, Austria: Springer, pp. 239–41, ISBN 0387822860
- ^ Bishop, D. H. L.; Pringle, C. R. (1995), "Order Mononegavirales", in Murphy, F. A.; Fauquet, C. M.; Bishop, D. H. L. et al., Virus Taxonomy—Sixth Report of the International Committee on Taxonomy of Viruses. Archives of Virology Supplement, vol. 10, Vienna, Austria: Springer, pp. 265–267, ISBN 3211825940
- ^ Pringle, C. R. (1997). "The order Mononegavirales--current status". Archives of virology 142 (11): 2321–2326. PMID 9672597.
- ^ Pringle, C. R. (2000), "Order Mononegavirales", in van Regenmortel, M. H. V.; Fauquet, C. M.; Bishop, D. H. L. et al., Virus Taxonomy—Seventh Report of the International Committee on Taxonomy of Viruses, San Diego, USA: Academic Press, pp. 525–530, ISBN 0123702003
- ^ a b c d e f Pringle, C. R. (2005), "Order Mononegavirales", in Fauquet, C. M.; Mayo, M. A.; Maniloff, J. et al., Virus Taxonomy—Eighth Report of the International Committee on Taxonomy of Viruses, San Diego, USA: Elsevier/Academic Press, pp. 609–614, ISBN 0123702003
- ^ a b c d e f g h i Kuhn, J. H.; Becker, S.; Ebihara, H.; Geisbert, T. W.; Johnson, K. M.; Kawaoka, Y.; Lipkin, W. I.; Negredo, A. I. et al. (2010). "Proposal for a revised taxonomy of the family Filoviridae: Classification, names of taxa and viruses, and virus abbreviations". Archives of Virology 155 (12): 2083–2103. doi:10.1007/s00705-010-0814-x. PMC 3074192. PMID 21046175. http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3074192.
- ^ Vetten, H. J.; Haenni, A. -L. (2006). "Taxon-specific suffixes for vernacular names". Archives of Virology 151 (6): 1249–1250. doi:10.1007/s00705-006-0743-x. PMID 16721512.
- ^ a b c Mihindukulasuriya, K. A.; Nguyen, N. L.; Wu, G.; Huang, H. V.; Travassos Da Rosa, A. P. A.; Popov, V. L.; Tesh, R. B.; Wang, D. (2009). "Nyamanini and Midway Viruses Define a Novel Taxon of RNA Viruses in the Order Mononegavirales". Journal of Virology 83 (10): 5109–5116. doi:10.1128/JVI.02667-08. PMC 2682064. PMID 19279111. http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=2682064.
- ^ a b c d e f g Payne, S.; Covaleda, L.; Jianhua, G.; Swafford, S.; Baroch, J.; Ferro, P. J.; Lupiani, B.; Heatley, J. et al. (2011). "Detection and Characterization of a Distinct Bornavirus Lineage from Healthy Canada Geese (Branta canadensis)". Journal of Virology. doi:10.1128/JVI.05700-11. PMID 21900161.
- ^ a b Nylund, S.; Karlsen, M.; Nylund, A. (2008). "The complete genome sequence of the Atlantic salmon paramyxovirus (ASPV)". Virology 373 (1): 137–148. doi:10.1016/j.virol.2007.11.017. PMID 18155122.
- ^ a b Falk, K.; Batts, W. N.; Kvellestad, A.; Kurath, G.; Wiik-Nielsen, J.; Winton, J. R. (2008). "Molecular characterisation of Atlantic salmon paramyxovirus (ASPV): A novel paramyxovirus associated with proliferative gill inflammation". Virus Research 133 (2): 218–227. doi:10.1016/j.virusres.2008.01.006. PMID 18304670.
- ^ Miller, P. J.; Afonso, C. L.; Spackman, E.; Scott, M. A.; Pedersen, J. C.; Senne, D. A.; Brown, J. D.; Fuller, C. M. et al. (2010). "Evidence for a New Avian Paramyxovirus Serotype 10 Detected in Rockhopper Penguins from the Falkland Islands". Journal of Virology 84 (21): 11496–11504. doi:10.1128/JVI.00822-10. PMC 2953191. PMID 20702635. http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=2953191.
- ^ a b Kurath, G.; Batts, W. N.; Ahne, W.; Winton, J. R. (2004). "Complete Genome Sequence of Fer-de-Lance Virus Reveals a Novel Gene in Reptilian Paramyxoviruses". Journal of virology 78 (4): 2045–2056. PMC 369410. PMID 14747569. http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=369410.
- ^ a b c Li, Z.; Yu, M.; Zhang, H.; Magoffin, D.; Jack, P.; Hyatt, A.; Wang, H.; Wang, L. (2006). "Beilong virus, a novel paramyxovirus with the largest genome of non-segmented negative-stranded RNA viruses". Virology 346 (1): 219–228. doi:10.1016/j.virol.2005.10.039. PMID 16325221.
- ^ a b c Lau, S. K. P.; Woo, P. C. Y.; Wong, B. H. L.; Wong, A. Y. P.; Tsoi, H. W.; Wang, M.; Lee, P.; Xu, H. et al. (2010). "Identification and complete genome analysis of three novel paramyxoviruses, Tuhoko virus 1, 2 and 3, in fruit bats from China". Virology 404 (1): 106–116. doi:10.1016/j.virol.2010.03.049. PMID 20537670.
- ^ a b Tidona, C. A.; Kurz, H. W.; Gelderblom, H. R.; Darai, G. (1999). "Isolation and Molecular Characterization of a Novel Cytopathogenic Paramyxovirus from Tree Shrews". Virology 258 (2): 425–434. doi:10.1006/viro.1999.9693. PMID 10366580.
- ^ Miller, P. J.; Boyle, D. B.; Eaton, B. T.; Wang, L. F. (2003). "Full-length genome sequence of Mossman virus, a novel paramyxovirus isolated from rodents in Australia". Virology 317 (2): 330–344. PMID 14698671.
- ^ Lambeth, L. S.; Yu, M.; Anderson, D. E.; Crameri, G.; Eaton, B. T.; Wang, L. -F. (2008). "Complete genome sequence of Nariva virus, a rodent paramyxovirus". Archives of Virology 154 (2): 199–207. doi:10.1007/s00705-008-0287-3. PMID 19104752.
- ^ Batts, W. N.; Falk, K.; Winton, J. R. (2008). "Genetic Analysis of Paramyxovirus Isolates from Pacific Salmon Reveals Two Independently Co-circulating Lineages". Journal of Aquatic Animal Health 20 (4): 215–224. doi:10.1577/H07-050.1. PMID 19306611.
- ^ Renshaw, R.; Glaser, A. L.; Van Campen, H.; Weiland, F.; Dubovi, E. J. (2000). "Identification and Phylogenetic Comparison of Salem Virus, a Novel Paramyxovirus of Horses". Virology 270 (2): 417–429. doi:10.1006/viro.2000.0305. PMID 10793001.
- ^ a b Kondo, H.; Maeda, T.; Shirako, Y.; Tamada, T. (2006). "Orchid fleck virus is a rhabdovirus with an unusual bipartite genome". Journal of General Virology 87 (8): 2413–2421. doi:10.1099/vir.0.81811-0. PMID 16847138.
- ^ a b c d e Gubala, A.; Davis, S.; Weir, R.; Melville, L.; Cowled, C.; Boyle, D. (2011). "Tibrogargan and Coastal Plains rhabdoviruses: Genomic characterization, evolution of novel genes and seroprevalence in Australian livestock". Journal of General Virology 92 (9): 2160–2170. doi:10.1099/vir.0.026120-0. PMID 21593274.
- ^ Kuzmin, I. V.; Mayer, A. E.; Niezgoda, M.; Markotter, W.; Agwanda, B.; Breiman, R. F.; Rupprecht, C. E. (2010). "Shimoni bat virus, a new representative of the Lyssavirus genus". Virus Research 149 (2): 197–210. doi:10.1016/j.virusres.2010.01.018. PMID 20138934.
- ^ Massah, A.; Izadpanah, K.; Afsharifar, A. R.; Winter, S. (2008). "Analysis of nucleotide sequence of Iranian maize mosaic virus confirms its identity as a distinct nucleorhabdovirus". Archives of Virology 153 (6): 1041–1047. doi:10.1007/s00705-008-0085-y. PMID 18449468.
- ^ a b c d e f Talbi, C.; Cabon, J.; Baud, M.; Bourjaily, M.; Boisséson, C.; Castric, J.; Bigarré, L. (2011). "Genetic diversity of perch rhabdoviruses isolates based on the nucleoprotein and glycoprotein genes". Archives of Virology. doi:10.1007/s00705-011-1103-z. PMID 21927897.
- ^ a b c d e f g h Longdon, B.; Obbard, D. J.; Jiggins, F. M. (2009). "Sigma viruses from three species of Drosophila form a major new clade in the rhabdovirus phylogeny". Proceedings of the Royal Society B: Biological Sciences 277 (1678): 35–44. doi:10.1098/rspb.2009.1472. PMC 2842628. PMID 19812076. http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=2842628.
- ^ Kuwata, R.; Isawa, H.; Hoshino, K.; Tsuda, Y.; Yanase, T.; Sasaki, T.; Kobayashi, M.; Sawabe, K. (2011). "RNA Splicing in a New Rhabdovirus from Culex Mosquitoes". Journal of Virology 85 (13): 6185–6196. doi:10.1128/JVI.00040-11. PMC 3126488. PMID 21507977. http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3126488.
- ^ a b Tao, J. J.; Zhou, G. Z.; Gui, J. F.; Zhang, Q. Y. (2008). "Genomic sequence of mandarin fish rhabdovirus with an unusual small non-transcriptional ORF". Virus Research 132 (1–2): 86–96. doi:10.1016/j.virusres.2007.10.018. PMID 18068257.
- ^ Allison, A. B.; Palacios, G.; Travassos Da Rosa, A.; Popov, V. L.; Lu, L.; Xiao, S. Y.; Detoy, K.; Briese, T. et al. (2011). "Characterization of Durham virus, a novel rhabdovirus that encodes both a C and SH protein". Virus Research 155 (1): 112–122. doi:10.1016/j.virusres.2010.09.007. PMC 3010432. PMID 20863863. http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3010432.
- ^ Quan, P. L.; Junglen, S.; Tashmukhamedova, A.; Conlan, S.; Hutchison, S. K.; Kurth, A.; Ellerbrok, H.; Egholm, M. et al. (2010). "Moussa virus: A new member of the Rhabdoviridae family isolated from Culex decens mosquitoes in Côte d'Ivoire". Virus Research 147 (1): 17–24. doi:10.1016/j.virusres.2009.09.013. PMC 2791192. PMID 19804801. http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=2791192.
- ^ Horie, M.; Honda, T.; Suzuki, Y.; Kobayashi, Y.; Daito, T.; Oshida, T.; Ikuta, K.; Jern, P. et al. (2010). "Endogenous non-retroviral RNA virus elements in mammalian genomes". Nature 463 (7277): 84–87. doi:10.1038/nature08695. PMC 2818285. PMID 20054395. http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=2818285.
- ^ a b c Belyi, V. A.; Levine, A. J.; Skalka, A. M. (2010). Buchmeier, Michael J.. ed. "Unexpected Inheritance: Multiple Integrations of Ancient Bornavirus and Ebolavirus/Marburgvirus Sequences in Vertebrate Genomes". PLoS Pathogens 6 (7): e1001030. doi:10.1371/journal.ppat.1001030. PMC 2912400. PMID 20686665. http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=2912400.
- ^ a b c Katzourakis, A.; Gifford, R. J. (2010). Malik, Harmit S.. ed. "Endogenous Viral Elements in Animal Genomes". PLoS Genetics 6 (11): e1001191. doi:10.1371/journal.pgen.1001191. PMC 2987831. PMID 21124940. http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=2987831.
- ^ Taylor, D.; Leach, R.; Bruenn, J. (2010). "Filoviruses are ancient and integrated into mammalian genomes". BMC evolutionary biology 10: 193. doi:10.1186/1471-2148-10-193. PMC 2906475. PMID 20569424. http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=2906475.
External links
Categories:- Animal diseases
- Animal virology
- Arthropod-borne viral fevers and viral haemorrhagic fevers
- Biological weapons
- Bovine diseases
- Dog diseases
- Eradicated diseases
- Hemorrhagic fevers
- Fish diseases
- Horse diseases
- Mononegavirales
- Microbiology
- Plant pathogens and diseases
- Poultry diseases
- Rabies
- RNA viruses
- Sheep and goat diseases
- Tropical diseases
- Viral diseases
- Viral plant pathogens and diseases
- Virology
- Virus-related cutaneous conditions
- Viruses
- Zoonoses
Wikimedia Foundation. 2010.