Organoplatinum

Organoplatinum

Organoplatinum chemistry is the chemistry of organometallic compounds containing a carbon to platinum chemical bond, and the study of platinum as a catalyst in organic reactions.[1][2][3] Organoplatinum compounds exist in oxidation state 0 to IV, with oxidation state II most abundant. The general order in bond strength is Pt-C (sp) > Pt-O > Pt-N > Pt-C (sp3). Organoplatinum and organopalladium chemistry are similar, but organoplatinum compounds are more stable and therefore less useful as catalysts.

Contents

Organoplatinum(0)

Most organoplatinum(0) compounds contain alkene and alkyne ligands. Carbonyl complexes are rare, and the analogue of Ni(CO)4 is elusive. The alkene and alkyne ligands serve as two-electron donors, for example in the complexes (PPh3)2Pt(C2H4) and (PPh3)2Pt(C2Ph2). The ethylene ligand in (PPh3)2Pt(C2H4) is labile and exchanges with alkynes and electrophilic alkenes, even C60.

A general synthetic route to (PPh3)2Pt(un) (un = alkene, alkyne) is reduction of potassium tetrachloroplatinate with ethanolic potassium hydroxide or hydrazine in presence of a phosphine ligand such as triphenylphosphine and the alkene or alkyne. Such reactions proceed via the intermediacy of cis-dichlorobis(triphenylphosphine)platinum(II). Nitrogen-based ligands do nor often support the formation of platinum complexes of alkenes and alkynes.

Zerovalent organoplatinum complexes lacking phosphine ligands are often prepared via PtCl2(COD).

Li2C8H8 + PtCl2(COD) + 3 C7H10 → [Pt(C7H10)3] + 2 LiCl + C8H8 + C8H12
Pt(C7H10)3 + 2 COD → Pt(COD)2 + 3 C7H10

where C7H10 is norbornene.

Organoplatinum(I)

Platinum(I) compounds are uncommon but generally are diamagnetic because they have Pt-Pt bonds. An example is the dication [Pt2(CO)6]2+.

Organoplatinum(II)

A historically significant organoplatinum(II) compound is Zeise's salt, which is obtained from ethylene and potassium tetrachloroplatinate:

Synthese Zeise's salt

The colourless diolefin complex dichloro(cycloocta-1,5-diene)platinum(II) is a more modern relative, and is more widely used.

dichloro(cycloocta-1,5-diene)platinum(II)

The stability and diversity of platinum(II) alkene complexes contrasts with the rarity of alkene complexes of nickel(II). Platinum allyl complexes are also common. In contrast to nickel chemistry, where compounds such as CpNi(L)X are common, cyclopentadienyl derivatives of Pt(II) are rare, consistent with the reluctance of Pt(II) to become pentacoordinate.

Alkyl and aryl platinum(II) complexes are often prepared by oxidative addition of an alkyl halide or aryl halide to a Pt(0) precursor such as tetrakis(triphenylphosphine)platinum(0) or Pt(C2H4)(PPh3)2. Alternatively, platinum(II) chlorides are susceptible to alkylation:[4][5]

PtCl2(SMe2)2 + 2 MeLi → PtMe2(SMe2)2 + 2 LiCl

The dimethylsulfide ligands in PtMe2(SMe2)2 can be displaced by other ligands.

Many organoplatinum(II) complexes arise via ortho-metalation and related intramolecular C-H activation processes.

Organoplatinum(IV)

The first organoplatinum compound ever synthesised was trimethylplatinum iodide from platinum(IV) chloride and methylmagnesium iodide, reported by Pope and Peachey in 1907.[6][7] The compound adopts a cubane-like structure with four triply bridging iodide ligands. "Tetramethylplatinum" was claimed in 1952 by Henry Gilman as a derivative of this tetramer, but this claim was later shown to be incorrect ("Tetramethylplatinum" proved to be [PtMe3OH]4). Salts of [PtMe6]2- and [PtMe4]2- have been characterized.[8]

Organoplatinum(IV) hydrides are rare.[9]. The first isolated representatives were prepared from organotin halides or acids with orthometalated arylplatinum(II) compounds. The compound Me(PEt3)2PtOTf reacts reversibly with triflic acid between -60 and -80 °C, forming methane and (PEt3)2Pt(OTf)2 at -20 °C. Weak acids often suffice even water and alcohol and in C-H bond activation the proton source is an alkane.

Catalysis

Heterogeneous catalysts based on platinum play a major role in the petrochemical industry, and it is assumed that these useful reactions proceed via surface-bound organoplatinum intermediates. Better defined but less commercially significant are homogenous catalysts based on platinum.

For hydrosilylation, H2PtCl6 ("Speier's catalyst") is an important catalyst. Mechanisms for this catalytic system usually assume intermediates that contain hydride, silyl ligand (R3Si), and alkene ligands.[10] Cis-dichlorobis(diethyl sulfide)platinum(II) and Karstedt’s catalyst (adduct of divinyltetramethyldisiloxane and chloroplatinic acid) also catalyse hydrosilylation [11]. Many metallodendrimers have repeating units based on organoplatinum compounds.

Idealized mechanism for metal-catalysed hydrosilylation of an alkene.

Research themes

Organoplatinum compounds are implicated in the Shilov system for the conversion of methane into methyl chloride. Strenuous efforts have been made, thus far unsuccessfully, to extend this reactivity to practical methods for functionalizing methane.[12]

Platinum compounds are also found to be catalysts in enyne cycloisomerisation.[13]

See also

  • Chemical bonds of carbon with other elements in the periodic table:
CH He
CLi CBe CB CC CN CO CF Ne
CNa CMg CAl CSi CP CS CCl CAr
CK CCa CSc CTi CV CCr CMn CFe CCo CNi CCu CZn CGa CGe CAs CSe CBr CKr
CRb CSr CY CZr CNb CMo CTc CRu CRh CPd CAg CCd CIn CSn CSb CTe CI CXe
CCs CBa CHf CTa CW CRe COs CIr CPt CAu CHg CTl CPb CBi CPo CAt Rn
Fr Ra Rf Db Sg Bh Hs Mt Ds Rg Cn Uut Uuq Uup Uuh Uus Uuo
CLa CCe CPr CNd CPm CSm CEu CGd CTb CDy CHo CEr CTm CYb CLu
Ac Th Pa CU Np Pu Am Cm Bk Cf Es Fm Md No Lr
Chemical bonds to carbon
Core organic chemistry Many uses in chemistry
Academic research, but no widespread use Bond unknown / not assessed

References

  1. ^ Nickel, Palladium and Platinum (Comprehensive Organometallic Chemistry II) R.J. Puddephatt (Editor) 2002 0080423167
  2. ^ Synthesis of Organometallic Compounds: A Practical Guide Sanshiro Komiya Ed. S. Komiya, M. Hurano 1997
  3. ^ Jwu-Ting Chen “Platinum: Organometallic Chemistry” in Encyclopedia of Inorganic Chemistry 2006, John Wiley & Sons, New York. doi:10.1002/0470862106.ia195
  4. ^ E. Costa, P. G. Pringle, M. Ravetz "[(1,2,5,6-N)-1,5-Cyclooctadiene]Dimethyl-Platinum(II)" Inorganic Syntheses, 1997, Volume 31, pp. 284. doi:10.1002/9780470132623.ch49
  5. ^ Geoffrey S. Hill, Michael J. Irwin, Christopher J. Levy, Louis M. Rendina, Richard J. Puddephatt "Platinum(II) Complexes of Dimethyl Sulfide" Inorganic Syntheses, 1998, Volume 32, pp. 149. doi:10.1002/9780470132630.ch25
  6. ^ "Proceedings of the Chemical Society, Vol. 23, No. 323". Proceedings of the Chemical Society (London) 23 (323): 81–94. 1907. doi:10.1039/PL9072300081.  edit
  7. ^ Pope, W. J.; Peachey, S. J. (1909). "LXXIII.?The alkyl compounds of platinum". Journal of the Chemical Society, Transactions 95: 571. doi:10.1039/CT9099500571.  edit
  8. ^ Greenwood, N. N.; & Earnshaw, A. (1997). Chemistry of the Elements (2nd Edn.), Oxford: Butterworth-Heinemann. ISBN 0-7506-3365-4.
  9. ^ Puddephatt, R. (2001). "Platinum(IV) hydride chemistry". Coordination Chemistry Reviews 219-221: 157–185. doi:10.1016/S0010-8545(01)00325-3.  edit
  10. ^ C. Elschenbroich, Organometallics (2006) Wiley and Sons-VCH: Weinheim. ISBN 978-3-29390-6
  11. ^ Kettler, P. B. (2003). "Platinum Group Metals in Catalysis:  Fabrication of Catalysts and Catalyst Precursors". Organic Process Research & Development 7 (3): 342–354. doi:10.1021/op034017o.  edit
  12. ^ Shannon S. Stahl, Jay A. Labinger, John E. Bercaw "Homogeneous Oxidation of Alkanes by Electrophilic Late Transition Metals" Angewandte Chemie International Edition, 1998, Volume 37, pages 2180-2192. doi:10.1002/(SICI)1521-3773(19980904)37:16<2180::AID-ANIE2180>3.0.CO;2-A
  13. ^ Zhang, L.; Sun, J.; Kozmin, S. ��A. (2006). "Gold and Platinum Catalysis of Enyne Cycloisomerization". Advanced Synthesis & Catalysis 348 (16–17): 2271. doi:10.1002/adsc.200600368.  edit

Wikimedia Foundation. 2010.

Игры ⚽ Нужна курсовая?

Look at other dictionaries:

  • organoplatinum — adjective Describing any organic compound containing a carbon to platinum bond …   Wiktionary

  • Organometallic chemistry — n Butyllithium, an organometallic compound. Four lithium atoms are shown in purple in a tetrahedron, and each lithium atom is bound to a butyl group (carbon is black, hydrogen is white). Organometallic chemistry is the study of chemical compounds …   Wikipedia

  • Carboplatin — Systematic (IUPAC) name cis diam …   Wikipedia

  • Cisplatin — Systematic (IUPAC) name (SP 4 2) diamminedichloridoplatinum …   Wikipedia

  • Oxaliplatin — Systematic (IUPAC) name [(1R,2 …   Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”