Reprocessed uranium

Reprocessed uranium

Reprocessed uranium (RepU) is the uranium recovered from nuclear reprocessing, as done commercially in France, the UK and Japan and by nuclear weapons states' military plutonium production programs. This uranium actually makes up the bulk of the material separated during reprocessing. Commercial LWR spent nuclear fuel contains on average (excluding cladding) only four percent plutonium, minor actinides and fission products by weight.

Reuse of reprocessed uranium has not been common because of low prices in the uranium market of recent decades, and because of the undesirable isotopic contaminants

In the last few years uranium prices have risen again, and if the price becomes high enough, it is possible that reprocessed uranium will be re-enriched and reused. A higher enrichment level will be required to compensate for the 236U which is lighter than 238U and therefore will concentrate in the enriched product.[2] Also, if fast breeder reactors ever come into commercial use, reprocessed uranium, like depleted uranium, will be usable in their breeding blankets.

There have been some studies involving the use of reprocessed uranium in CANDU reactors. CANDU is designed to use natural uranium as fuel; the U-235 content remaining in spent PWR/BWR fuel is typically greater than that found in natural uranium, allowing the re-enrichment step to be skipped. Fuel cycle tests also have included the DUPIC (Direct Use of spent PWR fuel In CANDU) fuel cycle, where used fuel from a Pressurized Water Reactor (PWR) is packaged into a CANDU fuel bundle with only physical reprocessing (cut into pieces) but no chemical reprocessing.[3]

References

  1. ^ Uranium from reprocessing
  2. ^ Advanced Fuel Cycle Cost Basis - Idaho National Laboratory
  3. ^ DUPIC The Evolution of CANDU Fuel Cycles and Their Potential Contribution to World Peace

Advanced Fuel Cycle Cost Basis - Idaho National Laboratory

  • Module K2 Aqueously Reprocessed Uranium Conversion and Disposition
  • Module K3 Pyrochemically/Pyrometallurgically Reprocessed Uranium Conversion and Disposition

Wikimedia Foundation. 2010.

Игры ⚽ Нужно решить контрольную?

Look at other dictionaries:

  • Uranium depletion — is the inescapable result of extracting and consuming uranium since it is a finite resource. The journal Environmental Science and Technology argues that the availability of high grade uranium ore will deplete over time making the fuel more… …   Wikipedia

  • Uranium-236 — Infobox isotope background = #fc6 text color = isotope name = Uranium 236 isotope filename = alternate names = mass number =236 symbol =U num neutrons =144 num protons =92 abundance =< 10^ 10 halflife = 2.348 x10^7 years error halflife = decay… …   Wikipedia

  • Uranium-238 — Infobox isotope background =#fc6 text color = image caption = 10 gram sample alternate names = mass number =238 symbol =U num neutrons =146 num protons =92 abundance = 99.284% halflife = 4.46 billion years error halflife = decay product = Thorium …   Wikipedia

  • Uranium market — The uranium market, like all commodity markets, has a history of volatility, moving not only with the standard forces of supply and demand, but also to whims of geopolitics. It has also evolved particularities of its own in response to the unique …   Wikipedia

  • Uranium-234 — Infobox isotope background = #fc6 text color = isotope name = Uranium 234 isotope filename = alternate names = mass number =234 symbol =U num neutrons =142 num protons =92 abundance =0.0055% halflife =246,000 years error halflife = decay product …   Wikipedia

  • Enriched uranium — Proportions of uranium 238 (blue) and uranium 235 (red) found naturally versus enriched grades Enriched uranium is a kind of uranium in which the percent composition of uranium 235 has been increased through the process of isotope separation.… …   Wikipedia

  • Peak uranium — is the point in time that the maximum global uranium production rate is reached. After that peak, the rate of production enters a terminal decline. While Uranium is used in nuclear weapons, its primary use is for energy generation via nuclear… …   Wikipedia

  • Depleted uranium — The DU penetrator of a 30 mm round[1] Depleted uranium (DU; also referred to in the past as Q metal, depletalloy, or D 38) is uranium with a lower content of the fissile isotope U 235 than natural uranium (natural uranium is about 99.27% uranium… …   Wikipedia

  • Nuclear fuel cycle — The nuclear fuel cycle, also called nuclear fuel chain, is the progression of nuclear fuel through a series of differing stages. It consists of steps in the front end, which are the preparation of the fuel, steps in the service period in which… …   Wikipedia

  • Nuclear reprocessing — technology was developed to chemically separate and recover fissionable plutonium from irradiated nuclear fuel.[1] Reprocessing serves multiple purposes, whose relative importance has changed over time. Originally reprocessing was used solely to… …   Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”