- Tritium
Infobox isotope
background = #ffcccc
text_color =
isotope_name = Hydrogen-3
alternate_names = tritium, triton
mass_number = 3
symbol = H
num_neutrons = 2
num_protons = 1
abundance = trace
halflife = 4500±8day s
decay_mode1 =Beta emission
decay_energy1 = 0.018590
decay_product = Helium-3
decay_symbol =He
decay_mass =3
mass = 3.0160492
spin = 1/2+
excess_energy = 14949.794
error1 = 0.001
binding_energy = 8481.821
error2 = 0.004Tritium (pronEng|ˈtɹɪt.i.əm, symbol Element|Tritium or SimpleNuclide|Hydrogen|3, also known as Hydrogen-3) is a radioactive
isotope ofhydrogen . The nucleus of tritium (sometimes called a triton) contains oneproton and twoneutron s, whereas the nucleus of protium (the most abundant hydrogen isotope) contains no neutrons and one proton.Decay
While Tritium has several different experimentally-determined values of its
half-life , theNIST recommends 4500±8 days (approximately 12.32 years) [ [http://nvl.nist.gov/pub/nistpubs/jres/105/4/j54luc2.pdf Comprehensive Review and Critical Evaluation of the Half-Life of Tritium] , National Institute of Standards and Technology] . It decays intohelium-3 by the reaction:
High-energy neutrons can also produce tritium from
lithium-7 in anendothermic reaction, consuming 2.466 MeV. This was discovered when the 1954 Castle Bravo nuclear test produced an unexpectedly high yield [ [http://www.ieer.org/reports/tritium.html#(11) IEER Tritium Report ] ] .: Tritium is occasionally a direct product of
nuclear fission , with a yield of about 0.01% (one per 10000 fissions). [ [http://www.ead.anl.gov/pub/doc/tritium.pdf Tritium (Hydrogen-3)] , Human Health Fact Sheet, Argonne National Laboratory, August 2005] [cite journal|author=Serot, O.; Wagemans, C.; Heyse, J.|title=New Results on Helium and Tritium Gas Production From Ternary Fission|journal=INTERNATIONAL CONFERENCE ON NUCLEAR DATA FOR SCIENCE AND TECHNOLOGY. AIP Conference Proceedings|volume=769|pages=857–860|year=2005|url=http://adsabs.harvard.edu/abs/2005AIPC..769..857S|doi=10.1063/1.1945141] This means that tritium release or recovery needs to be considered innuclear reprocessing even in ordinaryspent nuclear fuel where tritium production was not a goal. Tritium is also produced inheavy water -moderated reactors whendeuterium captures a neutron. This reaction has a very small cross section (which is why heavy water is such a goodneutron moderator ) and relatively little tritium is produced; nevertheless, cleaning tritium from the moderator may be desirable after several years to reduce the risk of escape to the environment.Ontario Power Generation 's Tritium Removal Facility can process up to 2.5 thousand tonnes (2,500 Mg) of heavy water a year, producing about 2.5 kg of tritium. [ [http://www.nuclearfaq.ca/cnf_sectionD.htm#x5 The Canadian Nuclear FAQ - Section D: Safety and Liability ] ]According to IEER's 1996 report about the
United States Department of Energy , only 225 kg of tritium has been produced in the US since 1955. Since it is continuously decaying into helium-3, the stockpile was approximately 75 kg at the time of the report. [ [http://www.ieer.org/reports/tritium.html#(11) Tritium: The environmental, health, budgetary, and strategic effects of the Department of Energy's decision to produce tritium] , Hisham ZerriffiJanuary, 1996]Tritium for American
nuclear weapon s was produced in specialheavy water reactor s at theSavannah River Site until their shutdown in 1988; with theStrategic Arms Reduction Treaty after the end of theCold War , existing supplies were sufficient for the new, smaller number of nuclear weapons for some time. Production was resumed withirradiation oflithium -containing rods (replacing the usualboron -containingcontrol rod s) at the commercialWatts Bar Nuclear Generating Station in 2003-2005 followed by extraction of tritium from the rods at the new Tritium Extraction Facility at SRS starting in November 2006. [http://www.srs.gov/general/news/factsheets/tef.pdf]Properties
Tritium has an
atomic mass of 3.0160492. It is a gas (Element|Tritium2 or SimpleNuclide|Hydrogen|32) atstandard temperature and pressure . It combines withoxygen to form a liquid calledtritiated water , Element|Tritium2Element|link|Oxygen, or partially tritiated water, Element|TritiumElement|link|HydrogenElement|link|Oxygen.Tritium figures prominently in studies of
nuclear fusion because of its favorable reaction cross section and the large amount of energy (17.6 MeV) produced through its reaction withdeuterium ::
All atomic nuclei, being composed of protons and neutrons, repel one another because of their positive charge. However, if the atoms have a high enough temperature and pressure (for example, in the core of the Sun), then their random motions can overcome such electrical repulsion (called the Coulomb force), and they can come close enough for the
strong nuclear force to take effect, fusing them into heavier atoms.The tritium nucleus, containing one proton and two neutrons, has the same charge as the nucleus of ordinary hydrogen, and it experiences the same electrostatic repulsive force when brought close to another atomic nucleus. However, the neutrons in the tritium nucleus increase the attractive strong nuclear force when brought close enough to another atomic nucleus. As a result, tritium can more easily fuse with other light atoms, compared with the ability of ordinary hydrogen to do so.
The same is true, albeit to a lesser extent, of deuterium. This is why
brown dwarf s (so-called failedstar s) cannot burn hydrogen, but they do indeed burn deuterium.Like
hydrogen , tritium is difficult to confine.Rubber ,plastic , and some kinds ofsteel are all somewhat permeable. This has raised concerns that if tritium is used in quantity, in particular forfusion reactor s, it may contribute toradioactive contamination , although its short half-life should prevent significant long-term accumulation in the atmosphere.Atmospheric nuclear testing (prior to the
Partial Test Ban Treaty ) proved unexpectedly useful to oceanographers, as the sharp spike in surface tritium levels could be used over the years to measure the rate of mixing of the lower and upper ocean levels.Health risks
Tritium is relatively similar to hydrogen, which makes that it binds to OH as
Tritiated water (HTO), and that it can make organic bonds (OBT) easily. The HTO and the OBT are easily ingested by drinking, through organic or water-containg foodstuffs. As tritium is a strong beta emitter, it is not dangerous externally, but it is a radiation hazard when inhaled, ingested via food, water, or absorbed through the skin. [ [http://www.greenpeace.org/raw/content/canada/en/documents-and-links/publications/tritium-hazard-report-pollu.pdf Tritium Hazard Report: Pollution and Radiation Risk from Canadian Nuclear Facilities] , I. Fairlie, 2007 June] [ [http://www.nuclearfaq.ca/ReviewofGreenpeacereport_Final.pdf Review of the Greenpeace report: "Tritium Hazard Report: Pollution and Radiation Risk from Canadian Nuclear Facilities"] , R.V. Osborne, 2007 August] [http://www.nrc.gov/reading-rm/doc-collections/fact-sheets/tritium-radiation-fs.html] [http://www.dep.state.pa.us/brp/Radiation_Control_Division/Tritium.htm]Regulatory limits
The legal limits for tritium in
drinking water can vary. Some figures are given below.* Canada: 7,000
Becquerel per liter (Bq/L).
* United States: 740 Bq/L or 20,000 picoCurie per liter (pCi/L) "(Safe Drinking Water Act )
* World Health Organization: 10,000 Bq/L.
* European Union: 'investigative' limit of 100* Bq/L.The U.S. limit is calculated to yield a dose of 4 mrem (or 40 micro
sievert s inSI units ) per year.Usage
elf-powered lighting
The emitted electrons from small amounts of tritium cause
phosphor s to glow so as to makeself-powered lighting devices called betalights, which are now used inwatches andexit sign s. It is also used in certain countries to make glowingkeychain s, and compasses. This takes the place ofradium , which can causebone cancer and has been banned in most countries for decades.The aforementioned
IEER report claims that the commercial demand for tritium is 400 grams per year.Nuclear weapons
Tritium is widely used in
nuclear weapon s for boosting a fission bomb or the fission primary of athermonuclear weapon . Before detonation, a few grams of tritium-deuterium gas are injected into the hollow "pit" of fissile plutonium or uranium. The early stages of the fission chain reaction supply enough heat and compression to start DT fusion, then both fission and fusion proceed in parallel, the fission assisting the fusion by continuing heating and compression, and the fusion assisting the fission with highly energetic (14.1MeV ) neutrons. As the fission fuel depletes and also explodes outward, it falls below the density needed to stay critical by itself, but the fusion neutrons make the fission process progress faster and continue longer than it would without boosting. Increased yield comes overwhelmingly from the increase in fission; the energy released by the fusion itself is much smaller because the amount of fusion fuel is much smaller.Besides increased yield (for the same amount of fission fuel with vs. without boosting) and the possibility of
variable yield (by varying the amount of fusion fuel), possibly even more important advantages are allowing the weapon (or primary of a weapon) to have a smaller amount of fissile material (eliminating the risk of predetonation by nearby nuclear explosions) and more relaxed requirements for implosion, allowing a smaller implosion system.Because the tritium in the
warhead is continuously decaying, it is necessary to replenish it periodically. The estimated quantity needed is 4 grams per warhead. [ [http://www.ieer.org/reports/tritium.html IEER Tritium Report ] ] To maintain constant inventory, 0.22 grams per warhead per year must be produced.As tritium quickly decays and is difficult to contain, the much larger secondary charge of a thermonuclear weapon instead uses
lithium deuteride as its fusion fuel; during detonation, neutrons splitlithium-6 into helium-4 and tritium; the tritium then fuses withdeuterium , producing more neutrons. As this process requires a higher temperature for ignition, and produces fewer and less energetic neutrons (only Element|link|Deuterium-Element|link|Deuterium fusion and SimpleNuclide|link|Lithium|7 splitting are net neutron producers), Element|link|LithiumElement|link|Deuterium is not used for boosting, only for secondaries.Controlled nuclear fusion
Tritium is an important fuel for controlled
nuclear fusion in both magnetic confinement andinertial confinement fusion reactor designs. The experimental fusion reactorITER and theNational Ignition Facility (NIF) will useDeuterium -Tritium (Element|link|Deuterium-Element|Tritium) fuel. The Element|Deuterium-Element|Tritium reaction is favored since it has the largest fusion cross-section (~ 5 barns peak) and reaches this maximum cross-section at the lowest energy (~65 keV center-of-mass) of any potential fusion fuel.The
Tritium Systems Test Assembly (TSTA) was a facility atLos Alamos National Laboratory dedicated to the development and demonstration of technologies required for fusion-relevant Deuterium-Tritium processing.mall arms sights
Tritium is used to make the sights of some small arms illuminate at night. Most night sights are used on semi-automatic handguns. The reticule on the
SA80 's opticalSUSAT sight (Sight Unit Small Arms Trilux) contains a small amount of tritium for the same effect as an example of tritium use on a rifle sight.Analytical chemistry
Tritium is sometimes used as a
radiolabel . It has the advantage that hydrogen appears in almost all organic chemicals making it easy to find a place to put tritium on the molecule under investigation. It has the disadvantage of producing a comparatively weak signal.History
Tritium was first predicted in the late 1920s by
Walter Russell , using his "spiral" periodic tableFact|date=August 2007, then produced in 1934 fromdeuterium , another isotope of hydrogen, byErnest Rutherford , working withMark Oliphant andPaul Harteck . Rutherford was unable to isolate the tritium, a job that was left toLuis Alvarez andRobert Cornog , who correctly deduced that the substance was radioactive.Willard F. Libby discovered that tritium could be used for dating water, and thereforewine .References
External links
* [http://atom.kaeri.re.kr/ Nuclear Data Evaluation Lab]
* [http://alsos.wlu.edu/qsearch.aspx?browse=science/Tritium Annotated bibliography for tritium from the Alsos Digital Library]
* [http://toxnet.nlm.nih.gov/cgi-bin/sis/search/r?dbs+hsdb:@term+@na+@rel+tritium,+radioactive NLM Hazardous Substances Databank – Tritium, Radioactive]
* [http://books.google.com/books?id=sYKYZaxg0RUC Tritium on Ice: The Dangerous New Alliance of Nuclear Weapons and Nuclear Power by Kenneth D. Bergeron]Isotope|element=Hydrogen
lighter=Hydrogen-2
heavier=Hydrogen-4
before=Hydrogen-4
after=Helium-3
Wikimedia Foundation. 2010.