Organoaluminium chemistry

Organoaluminium chemistry
Organoaluminium

Organoaluminium chemistry is the study of compounds containing bonds between carbon and aluminium bond. It is one of the major themes within organometallic chemistry.[1] [2] Illustrative organoaluminium compounds are the dimer trimethylaluminium, the monomer triisobutylaluminium, and the titanium-aluminium compound called Tebbe's reagent. The behavior of organoaluminium compounds can be understood in terms of the polarity of the C−Al bond and the high Lewis acidity of the three-coordinated species. Industrially, these compounds are mainly used for the production of polyolefins.

Contents

History

The first organoaluminium compound (C2H5)3Al2I3 was discovered in 1859.[3] Organoaluminium compounds were however little known until the 1950s when Karl Ziegler and colleagues discovered the direct synthesis of trialkylaluminium compounds and applied these compounds to catalytic olefin polymerization. This line of research ultimately resulted in the Nobel Prize to Ziegler.

Structure and bonding

Aluminium(III) compounds

Organoaluminium compounds generally feature three- and four-coordinate Al centers, although higher coordination numbers are observed with inorganic ligands such as fluoride. In accord with the usual trends, four-coordinate Al prefers to be tetrahedral. In contrast to boron, aluminium is a larger atom and easily accommodates four carbon ligands. The triorganoaluminium compounds are thus usually dimeric with a pair of bridging alkyl ligands, e.g., Al2(C2H5)4(μ-C2H5)2. Thus, despite its common name of triethylaluminium, this compound contains two aluminium centres, and six ethyl groups. When the organoaluminium compound contain hydride or halide, these smaller ligands tend to occupy the bridging sites. Three coordination occurs when the R groups is bulky, e.g. Al(Mes)3 (Mes = 2,4,6-Me3C6H2 or mesityl) or isobutyl.[4]

Structure of trimethylaluminium, a compound that features five-coordinate carbon.


Ligand exchange in trialkylaluminium compounds

The trialkylaluminium dimers often participate in dynamic equilibria, resulting in the interchange of bridging and terminal ligands as well as ligand exchange between dimers. Even in noncoordinating solvents, Al-Me exchange is fast, as confirmed by proton NMR spectroscopy. For example, at −25 °C the 1H NMR spectrum of Me6Al2 comprises two signals in 1:2 ratio, as expected from the solid state structure. At 20 °C, only one signal is observed because exchange of terminal and bridging methyl groups is too fast to be resolved by NMR. The high Lewis acidity of the monomeric species is related to the size of the Al(III) center and its tendency to achieve an octet configuration.

Low valent organoaluminium compounds

The first organoaluminium compound with a Al-Al bond was reported in 1988 as (((Me3Si)2CH)2Al)2 (a dialane). They are typically prepared reduction of the dialkylaluminium chlorides by metallic potassium:[5]

(R2AlCl)2 + 2 K → R2Al-AlR2 + 2 KCl

Another notable group of alanes are tetraalanes containing for Al(I) centres. These compounds adopt a tetrahedrane core, as illustrated by (Cp*Al)4 and ((Me3Si3C)Al)4. The cluster [Al12(i-Bu)12]2- was obtained from related investigations on the reduction of organoaluminium compounds. This dianion adopts an icosahedral structure reminiscent of dodecaborate ([B12H12]2-). Its formal oxidation state is less than one.

Preparation

From alkyl halides and aluminium

Industrially, simple aluminium alkyls of the type Al2R6 (R = Me, Et) are prepared in a two-step process beginning with the alkylation of aluminium powder:

2 Al + 3 CH3CH2Cl → (CH3CH2)3Al2Cl3

The reaction resembles the synthesis Grignard reagents. The product, (CH3CH2)3Al2Cl3, is called ethylaluminium sesquichloride. The term sesquichloride refers to the fact that, on average, the Cl:Al ratio is 1.5. These sesquichlorides can be converted to the triorganoaluminium derivatives by reduction:

2 (CH3CH2)3Al2Cl3 + 6 Na → (CH3CH2)6Al2 + 2 Al + 6 NaCl

This method is used for production of trimethylaluminium and triethylaluminium.[6]

Hydroalumination

Aluminium powder reacts directly with certain terminal alkenes in the presence of hydrogen. The process entails two steps, the first producing dialkylaluminium hydrides. Such reactions are typically conducted at elevated temperatures and require activation by trialkylaluminium reagents:

3 Al + 3/2 H2 + 6 CH2=CHR → [HAl(CH2CHR)2]3

For nonbulky R groups, the organoaluminium hydrides are typically trimeric. In a subsequent step, these hydrides are treated with more alkene to effect hydroalumiunation:

2 [HAl(CH2CHR)2]3 + 3 CH2=CHR → 3 [Al2(CH2CHR)3

Diisobutylaluminium hydride, which is dimeric, is prepared by hydride elimination from triisobutylaluminium:

2 i-Bu3Al → (i-Bu2AlH)2 + 2 (CH3)2C=CH2

carboalumination

Organoaluminium compounds can react with alkenes and alkynes in carboalumination. Monoaddition is only possible when the alkene is substituted. The reaction is regioselective for 1-alkenes. [7] The so-called ZACA reaction is an example of an asymmetric carboalumination.

Laboratory preparations

Although the simple members are commercially available at low cost, many methods have been developed for their synthesis in the laboratory, including metathesis or transmetalation. Metathesis of aluminium trichloride with RLi or RMgX gives the trialkyl:

AlCl3 + 3 BuLi → Bu3Al + 3 LiCl
  • Transmetalation
2 Al + 3 HgPh2 → 2 AlPh3 + 3 Hg

Reactions

Lewis acidity

Organoaluminium compounds are hard acids and readily form adducts with bases such as pyridine, THF and tertiary amines. These adducts are tetrahedral at Al.

Electrophiles

The Al-C bond is polarized such that the carbon is highly basic. Acids react to give alkanes. For example, alcohols give alkoxides:

AlR'3 + ROH → (R'2Al−OR)n + R'H

A wide variety of acids can be employed beyond the simple mineral acids. Amines give amido derivatives. With carbon dioxide, trialkylaluminium compounds give the dialkylaluminium carboxylate:

AlR3 + CO2 → R2AlO2CR

The conversion is reminiscent of the carbonation of Grignard reagents.

With oxygen one obtains the corresponding alkoxides, which can be hydrolysed to the alcohols:

AlR3 + 3/2 O2 → Al(OR)3

Alkene polymerization

Industrially, organoaluminium compounds can be used as catalysts for alkene polymerization to polyolefins, for example the catalyst methylaluminoxane.

See also

CH He
CLi CBe CB CC CN CO CF Ne
CNa CMg CAl CSi CP CS CCl CAr
CK CCa CSc CTi CV CCr CMn CFe CCo CNi CCu CZn CGa CGe CAs CSe CBr CKr
CRb CSr CY CZr CNb CMo CTc CRu CRh CPd CAg CCd CIn CSn CSb CTe CI CXe
CCs CBa CHf CTa CW CRe COs CIr CPt CAu CHg CTl CPb CBi CPo CAt Rn
Fr Ra Rf Db Sg Bh Hs Mt Ds Rg Cn Uut Uuq Uup Uuh Uus Uuo
CLa CCe CPr CNd CPm CSm CEu CGd CTb CDy CHo CEr CTm CYb CLu
Ac Th Pa CU Np Pu Am Cm Bk Cf Es Fm Md No Lr
Chemical bonds to carbon
Core organic chemistry Many uses in chemistry
Academic research, but no widespread use Bond unknown / not assessed

References

  1. ^ Atkins inorganic chemistry, organometallic compounds.
  2. ^ Organoaluminum chemistry at the forefront of research and development M. Witt and H. W. Roesky CURRENT SCIENCE, VOL. 78, NO. 4, 25 FEBRUARY 2000
  3. ^ Hallwachs, W. and Schafarik, A., "Ueber die Verbindungen der Erdmetalle mit organischen Radicalen" Liebigs Ann. Chem., 1859, 109, 206-209.doi:10.1002/jlac.18591090214
  4. ^ Elschenbroich, C. ”Organometallics” (2006) Wiley-VCH: Weinheim. ISBN 978-3-29390-6
  5. ^ Uhl, Werner "Organoelement Compounds Possessing Al---Al, Ga---Ga, In---In, and Tl---Tl Single Bonds" Advances in Organometallic Chemistry Volume 51, 2004, Pages 53-108. doi:10.1016/S0065-3055(03)51002-4
  6. ^ Michael J. Krause, Frank Orlandi, Alfred T. Saurage and Joseph R. Zietz "Aluminum Compounds, Organic" in Ullmann's Encyclopedia of Industrial Chemistry, 2005, Wiley-VCH, Weinheim. doi:10.1002/14356007.a01_543
  7. ^ Comprehensive Organic Synthesis: Additions to and substitutions at C-C[pi]-Bonds Barry M. Trost,Martin F. Semmelhack,Ian Fleming

Wikimedia Foundation. 2010.

Игры ⚽ Нужна курсовая?

Look at other dictionaries:

  • Organoaluminium — bond. [Atkins inorganic chemistry , organometallic compounds.] History Organoaluminium compounds, little known until the 1950s, have become widely accepted and increasingly important in the field of industry and in the laboratory, particularly… …   Wikipedia

  • Organometallic chemistry — n Butyllithium, an organometallic compound. Four lithium atoms are shown in purple in a tetrahedron, and each lithium atom is bound to a butyl group (carbon is black, hydrogen is white). Organometallic chemistry is the study of chemical compounds …   Wikipedia

  • Organotin chemistry — Organotin compounds are those with tin linked to hydrocarbons. Organotin compounds or stannanes are chemical compounds based on tin with hydrocarbon substituents. Organotin chemistry is part of the wider field of organometallic chemistry.[1] The… …   Wikipedia

  • Common reagents — This is a list of common inorganic and organic reagents often used in chemistry. Contents 1 Synopsis 2 Reagent Compounds 3 See also 4 References S …   Wikipedia

  • Trimethylaluminium — IUPAC name trimethylalumane …   Wikipedia

  • Triethylaluminium — Strukturformel …   Deutsch Wikipedia

  • Chloroethane — Chloroethane …   Wikipedia

  • Polyethylene — or polythene (IUPAC name poly(ethene)) is a thermoplastic commodity heavily used in consumer products (notably the plastic shopping bag). Over 60 million tons of the material are produced worldwide every year. Description Polyethylene is a… …   Wikipedia

  • Cyclododecatriene — C12H18 is a cycloalkene with three alkene groups. The 1,3,5 trans trans cis isomer has some industrial importance [1] and is obtained by cyclotrimerization of butadiene with titanium tetrachloride and an organoaluminium co catalyst [2] …   Wikipedia

  • 1,5,9-Cyclododecatrien — Strukturformel EEZ Isomer Allgemeines Name …   Deutsch Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”