Magnetic susceptibility

Magnetic susceptibility

In electromagnetism, the magnetic susceptibility χm (latin: susceptibilis “receptiveness”) is a dimensionless proportionality constant that indicates the degree of magnetization of a material in response to an applied magnetic field. A related term is magnetizability, the proportion between magnetic moment and magnetic flux density.[1]

Contents

Definition of volume susceptibility

See also Relative permeability.

The volume magnetic susceptibility, represented by the symbol χv (often simply χ, sometimes χm — magnetic, to distinguish from the electric susceptibility), is defined by the relationship


\mathbf{M} = \chi_v \mathbf{H}

where, in SI units,

M is the magnetization of the material (the magnetic dipole moment per unit volume), measured in amperes per meter, and
H is the magnetic field strength, also measured in amperes per meter.

The magnetic induction B is related to H by the relationship


\mathbf{B} \ = \ \mu_0(\mathbf{H} + \mathbf{M}) \ = \ \mu_0(1+\chi_v) \mathbf{H} \ = \ \mu \mathbf{H}

where μ0 is the magnetic constant (see table of physical constants), and (1 + χv) is the relative permeability of the material. Thus the volume magnetic susceptibility χv and the magnetic permeability μ are related by the following formula:

\mu = \mu_0(1+\chi_v)\, .

Sometimes[2] an auxiliary quantity, called intensity of magnetization (also referred to as magnetic polarisation J) and measured in teslas, is defined as

\mathbf{I} = \mu_0 \mathbf{M} \, .

This allows an alternative description of all magnetization phenomena in terms of the quantities I and B, as opposed to the commonly used M and H.

Conversion between SI and CGS units

Note that these definitions are according to SI conventions. However, many tables of magnetic susceptibility give CGS values (more specifically emu-cgs, short for electromagnetic units, or Gaussian-cgs; both are the same in this context) that rely on a different definition of the permeability of free space:[3]


\mathbf{B}^{\text{cgs}} \ = \ \mathbf{H}^{\text{cgs}} + 4\pi\mathbf{M}^{\text{cgs}} \ = \ (1+4\pi\chi_{v}^{\text{cgs}}) \mathbf{H}^{\text{cgs}}

The dimensionless CGS value of volume susceptibility is multiplied by 4π to give the dimensionless SI volume susceptibility value:[3]

\chi_v^{\text{SI}}=4\pi\chi_v^{\text{cgs}}

For example, the CGS volume magnetic susceptibility of water at 20°C is −7.19×10−7 which is −9.04×10−6 using the SI convention.

Mass susceptibility and molar susceptibility

There are two other measures of susceptibility, the mass magnetic susceptibilitymass or χg, sometimes χm), measured in m3·kg−1 in SI or in cm3·g−1 in CGS and the molar magnetic susceptibilitymol) measured in m3·mol−1 (SI) or cm3·mol−1 (CGS) that are defined below, where ρ is the density in kg·m−3 (SI) or g·cm−3 (CGS) and M is molar mass in kg·mol−1 (SI) or g·mol−1 (CGS).

χmass = χv / ρ
χmol = Mχmass = Mχv / ρ

Sign of susceptibility: diamagnetics and other types of magnetism

If χ is positive, the material can be paramagnetic . In this case, the magnetic field in the material is strengthened by the induced magnetization. Alternatively, if χ is negative, the material is diamagnetic. As a result, the magnetic field in the material is weakened by the induced magnetization. Generally, non-magnetic materials are said para- or diamagnetic because they do not possess permanent magnetization without external magnetic field. Ferromagnetic, ferrimagnetic, or antiferromagnetic materials, which have positive susceptibility, possess permanent magnetization even without external magnetic field.

Experimental methods to determine susceptibility

Volume magnetic susceptibility is measured by the force change felt upon the application of a magnetic field gradient.[4] Early measurements were made using the Gouy balance where a sample is hung between the poles of an electromagnet. The change in weight when the electromagnet is turned on is proportional to the susceptibility. Today, high-end measurement systems use a superconductive magnet. An alternative is to measure the force change on a strong compact magnet upon insertion of the sample. This system, widely used today, is called the Evans balance.[5] For liquid samples, the susceptibility can be measured from the dependence of the NMR frequency of the sample on its shape or orientation.[6][7][8][9][10]

Tensor susceptibility

The magnetic susceptibility of most crystals is not a scalar. Magnetic response M is dependent upon the orientation of the sample and can occur in directions other than that of the applied field H. In these cases, volume susceptibility is defined as a tensor

Mi = χijHj

where i and j refer to the directions (e.g., x, y and z in Cartesian coordinates) of the applied field and magnetization, respectively. The tensor is thus rank 2, dimension (3,3) describing the component of magnetization in the i-th direction from the external field applied in the j-th direction.

Differential susceptibility

In ferromagnetic crystals, the relationship between M and H is not linear. To accommodate this, a more general definition of differential susceptibility is used

\chi^{d}_{ij} = \frac{\part M_i}{\part H_j}

where \chi^{d}_{ij} is a tensor derived from partial derivatives of components of M with respect to components of H. When the coercivity of the material parallel to an applied field is the smaller of the two, the differential susceptibility is a function of the applied field and self interactions, such as the magnetic anisotropy. When the material is not saturated, the effect will be nonlinear and dependent upon the domain wall configuration of the material.

Susceptibility in the frequency domain

When the magnetic susceptibility is measured in response to an AC magnetic field (i.e. a magnetic field that varies sinusoidally), this is called AC susceptibility. AC susceptibility (and the closely related "AC permeability") are complex quantities, and various phenomena (such as resonances) can be seen in AC susceptibility that cannot in constant-field (DC) susceptibility. In particular, when an ac-field is applied perpendicular to the detection direction (called the "transverse susceptibility" regardless of the frequency), the effect has a peak at the ferromagnetic resonance frequency of the material with a given static applied field. Currently, this effect is called the microwave permeability or network ferromagnetic resonance in the literature. These results are sensitive to the domain wall configuration of the material and eddy currents.

In terms of ferromagnetic resonance, the effect of an ac-field applied along the direction of the magnetization is called parallel pumping.

For a tutorial with more information on AC susceptibility measurements, see here (external link).

Examples

Magnetic susceptibility of some materials
Material Temperature Pressure χmol (molar susc.) χmass (mass susc.) χv (volume susc.) M (molar mass) ρ (density)
Units (°C) (atm) SI
(m3·mol−1)
CGS
(cm3·mol−1)
SI
(m3·kg−1)
CGS
(cm3·g−1)
SI
CGS
(emu)
(10−3 kg/mol)
or (g/mol)
(103 kg/m3)
or (g/cm3)
vacuum Any 0 0 0 0 0 0 0 0
water [11] 20 1 −1.631×10−10 −1.298×10−5 −9.051×10−9 −7.203×10−7 −9.035×10−6 −7.190×10−7 18.015 0.9982
bismuth [12] 20 1 −3.55×10−9 −2.82×10−4 −1.70×10−8 −1.35×10−6 −1.66×10−4 −1.32×10−5 208.98 9.78
Diamond [13] R.T. 1 −7.4×10−11 −5.9×10−6 −6.2×10−9 −4.9×10−7 −2.2×10−5 −1.7×10−6 12.01 3.513
Graphite [14] \chi_{\perp}(to c-axis) R.T. 1 −7.5×10−11 −6.0×10−6 −6.3×10−9 −5.0×10−7 −1.4×10−5 −1.1×10−6 12.01 2.267
Graphite [14] χ | | R.T. 1 −3.2×10−9 −2.6×10−4 −2.7×10−7 −2.2×10−5 −6.1×10−4 −4.9×10−5 12.01 2.267
Graphite [14] χ | | -173 1 −4.4×10−9 −3.5×10−4 −3.6×10−7 −2.9×10−5 −8.3×10−4 −6.6×10−5 12.01 2.267
He [15] 20 1 −2.38×10−11 −1.89×10−6 −5.93×10−9 −4.72×10−7 −9.85×10−10 −7.84×10−11 4.0026 0.000166
Xe [15] 20 1 −5.71×10−10 −4.54×10−5 −4.35×10−9 −3.46×10−7 −2.37×10−8 −1.89×10−9 131.29 0.00546
O2 [15] 20 0.209 4.3×10−8 3.42×10−3 1.34×10−6 1.07×10−4 3.73×10−7 2.97×10−8 31.99 0.000278
N2 [15] 20 0.781 −1.56×10−10 −1.24×10−5 −5.56×10−9 −4.43×10−7 −5.06×10−9 −4.03×10−10 28.01 0.000910
Al 1 2.2×10−10 1.7×10−5 7.9×10−9 6.3×10−7 2.2×10−5 1.75×10−6 26.98 2.70
Ag [16] 961 1 −2.31×10−5 −1.84×10−6 107.87

Sources of confusion in published data

There are tables of magnetic susceptibility values published on-line that seem to have been uploaded from a substandard source,[17] which itself has probably borrowed heavily from the CRC Handbook of Chemistry and Physics. Some of the data (e.g. for Al, Bi, and diamond) are apparently in cgs Molar Susceptibility units, whereas that for water is in Mass Susceptibility units (see discussion above). The susceptibility table in the CRC Handbook is known to suffer from similar errors, and even to contain sign errors. Effort should be made to trace the data in such tables to the original sources, and to double-check the proper usage of units.

See also

References and notes

  1. ^ "magnetizability, ξ". IUPAC Compendium of Chemical Terminology—The Gold Book (2nd ed.). International Union of Pure and Applied Chemistry. 1997. http://goldbook.iupac.org/search.py?search_text=magnetizability. 
  2. ^ Richard A. Clarke. "Magnetic properties of materials". Info.ee.surrey.ac.uk. http://info.ee.surrey.ac.uk/Workshop/advice/coils/mu/#itns. Retrieved 2011-11-08. 
  3. ^ a b Bennett, L. H.; Page, C. H.; and Swartzendruber, L. J. (1978). "Comments on units in magnetism". Journal of Research of the National Bureau of Standards (NIST, USA) 83 (1): 9–12. 
  4. ^ L. N. Mulay (1972). A. Weissberger and B. W. Rossiter. ed. Techniques of Chemistry. 4. Wiley-Interscience: New York. p. 431. 
  5. ^ "Magnetic Susceptibility Balances". Sherwood-scientific.com. http://www.sherwood-scientific.com/msb/msbindex.html. Retrieved 2011-11-08. 
  6. ^ J. R. Zimmerman, and M. R. Foster (1957). "Standardization of NMR high resolution spectra". J. Phys. Chem. 61 (3): 282–289. doi:10.1021/j150549a006. 
  7. ^ Robert Engel, Donald Halpern, and Susan Bienenfeld (1973). "Determination of magnetic moments in solution by nuclear magnetic resonance spectrometry". Anal. Chem. 45 (2): 367–369. doi:10.1021/ac60324a054. 
  8. ^ P. W. Kuchel, B. E. Chapman, W. A. Bubb, P. E. Hansen, C. J. Durrant, and M. P. Hertzberg (2003). "Magnetic susceptibility: solutions, emulsions, and cells". Concepts Magn. Reson. A 18: 56–71. doi:10.1002/cmr.a.10066. 
  9. ^ K. Frei and H. J. Bernstein (1962). "Method for determining magnetic susceptibilities by NMR". J. Chem. Phys. 37 (8): 1891–1892. Bibcode 1962JChPh..37.1891F. doi:10.1063/1.1733393. 
  10. ^ R. E. Hoffman (2003). "Variations on the chemical shift of TMS". J. Magn. Reson. 163 (2): 325–331. Bibcode 2003JMagR.163..325H. doi:10.1016/S1090-7807(03)00142-3. PMID 12914848. 
  11. ^ G. P. Arrighini, M. Maestro, and R. Moccia (1968). "Magnetic Properties of Polyatomic Molecules: Magnetic Susceptibility of H2O, NH3, CH4, H2O2". J. Chem. Phys. 49 (2): 882–889. Bibcode 1968JChPh..49..882A. doi:10.1063/1.1670155. 
  12. ^ S. Otake, M. Momiuchi and N. Matsuno (1980). "Temperature Dependence of the Magnetic Susceptibility of Bismuth". J. Phys. Soc. Jap. 49 (5): 1824–1828. Bibcode 1980JPSJ...49.1824O. doi:10.1143/JPSJ.49.1824.  The tensor needs to be averaged over all orientations: \chi=(1/3)\chi_{||}+(2/3)\chi_{\perp} .
  13. ^ J. Heremans, C. H. Olk and D. T. Morelli (1994). "Magnetic Susceptibility of Carbon Structures". Phys. Rev. B 49 (21): 15122–15125. Bibcode 1994PhRvB..4915122H. doi:10.1103/PhysRevB.49.15122. 
  14. ^ a b c N. Ganguli and K.S. Krishnan (1941). "The Magnetic and Other Properties of the Free Electrons in Graphite". Proc. R. Soc. London 177 (969): 168–182. Bibcode 1941RSPSA.177..168G. doi:10.1098/rspa.1941.0002. 
  15. ^ a b c d R. E. Glick (1961). "On the Diamagnetic Susceptibility of Gases". J. Phys. Chem. 65 (9): 1552–1555. doi:10.1021/j100905a020. 
  16. ^ R. Dupree and C. J. Ford (1973). "Magnetic susceptibility of the noble metals around their melting points". Phys. Rev. B 8 (4): 1780–1782. Bibcode 1973PhRvB...8.1780D. doi:10.1103/PhysRevB.8.1780. 
  17. ^ "Magnetic Properties Susceptibilities Chart from". READE. 2006-01-11. http://www.reade.com/Particle_Briefings/magnetic_susceptibilities.html. Retrieved 2011-11-08. 

Wikimedia Foundation. 2010.

Игры ⚽ Нужно решить контрольную?

Look at other dictionaries:

  • Magnetic susceptibility — Susceptibility Sus*cep ti*bil i*ty, n.; pl. {Susceptibilities}. [Cf. F. susceptibilit[ e].] 1. The state or quality of being susceptible; the capability of receiving impressions, or of being affected. [1913 Webster] 2. Specifically, capacity for… …   The Collaborative International Dictionary of English

  • magnetic susceptibility — Elect. the coefficient or set of coefficients of the magnetic intensity in any expression giving the components of magnetization as linear combinations of the components of magnetic intensity. Also called susceptibility. * * * ▪ physics… …   Universalium

  • magnetic susceptibility — magnetinė juta statusas T sritis Standartizacija ir metrologija apibrėžtis Apibrėžtį žr. priede. priedas( ai) Grafinis formatas atitikmenys: angl. magnetic susceptibility vok. magnetische Suszeptibilität, f rus. магнитная восприимчивость, f pranc …   Penkiakalbis aiškinamasis metrologijos terminų žodynas

  • magnetic susceptibility — magnetinė juta statusas T sritis fizika atitikmenys: angl. magnetic susceptibility vok. magnetische Suszeptibilität, f rus. магнитная восприимчивость, f pranc. susceptibilité magnétique, f …   Fizikos terminų žodynas

  • magnetic susceptibility — noun : susceptibility 3a * * * Elect. the coefficient or set of coefficients of the magnetic intensity in any expression giving the components of magnetization as linear combinations of the components of magnetic intensity. Also called… …   Useful english dictionary

  • magnetic susceptibility — noun a measure of the magnetization of a material per unit of applied magnetic field …   Wiktionary

  • magnetic susceptibility — /mægˌnɛtɪk səsɛptəˈbɪləti/ (say mag.netik suhseptuh biluhtee) noun the ratio of the intensity of magnetisation produced in a substance to the intensity of the magnetic field to which it is subjected …  

  • magnetic susceptibility — Смотри Восприимчивость магнитная …   Энциклопедический словарь по металлургии

  • molar magnetic susceptibility — molinė magnetinė juta statusas T sritis fizika atitikmenys: angl. molar magnetic susceptibility vok. molare Suszeptibilität, f; Molsuszeptibilität, f rus. молярная магнитная восприимчивость, f pranc. susceptibilité magnétique molaire, f …   Fizikos terminų žodynas

  • volume magnetic susceptibility — tūrinė magnetinė juta statusas T sritis fizika atitikmenys: angl. volume magnetic susceptibility vok. Volumensuszeptibilität, f; Volumsuszeptibilität, f rus. объёмная магнитная восприимчивость, f pranc. susceptibilité magnétique volumique, f …   Fizikos terminų žodynas

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”