Medicinal mushrooms

Medicinal mushrooms
Lepista nuda

Medicinal mushrooms are mushrooms, or mushroom extracts, that are used or studied as possible treatments for diseases. Lentinula edodes (shiitake), Grifola frondosa (maitake), Ganoderma lucidum (mannentake), and Cordyceps, have a history of medicinal use spanning millennia in parts of Asia. Research has indicated mushrooms have possible cardiovascular, anticancer, antiviral, antibacterial, antiparasitic, antiinflammatory, hepatoprotective, and glycemic, activities. Several mushroom extracts PSK,[1] PSP,[2] AHCC, lentinan,[3] and schizophyllan, are considered nutraceuticals.[4][5] Non-mushroom forming fungi, were the original source of penicillin, griseofulvin, lovastatin, and have shown potential in bioengineering medicines like paclitaxel.



Artwork with Ganoderma lucidum (artists: Chen Hongshou, Láng Shìníng)

Lentinula edodes, Grifola frondosa, Ganoderma lucidum, and Cordyceps have a history of medicinal use spanning millennia in parts of Asia. In ancient Japan, Grifola frondosa was worth its weight in silver.[6] Ganoderma lucidum is known in Chinese as língzhī (spirit plant), in Japanese as mannentake (10,000 year mushroom).

Inonotus obliquus (chaga) has a history of medicinal use spanning 500 years, in parts of Russia and Northern Europe.[7] The ancient Egyptians considered mushrooms food for royalty.[8] It is written in the Hadith, "truffles (desert truffle) are manna which Allah, sent to the people of Israel through Moses, and its juice is a medicine for the eyes". [9] A review noted several pharmacopoeias from Hungary, China, and India, include Fomes fomentarius (amadou).[1] A review noted, that as early as the 16th century, Inonotus obliquus (chaga) was used as an anticancer agent in Russia and parts of Northern Europe.[7]

Mushroom stones dating to 3000 BC, have been recovered in Mesoamerica, and were associated with the Olmec, Zapotec, Maya and Aztec.[10]


Anticancer activities

Polysaccharides and polysaccharide-protein complexes from medicinal mushrooms may enhance innate immune responses, resulting in antitumor activities. "While the mechanism of their antitumor actions is still not completely understood, stimulation and modulation of key host immune responses by these mushroom polymers appears central. Several of the mushroom polysaccharide compounds have proceeded through phases I, II, and III clinical trials and are used extensively and successfully in Asia to treat various cancers and other diseases."[11]

Inonotus obliquus (chaga) contains betulin, a precursor to betulinic acid.[12] Conjugated linoleic acid is found in Agaricus bisporus (portobello) and Agaricus subrufescens (agaricus blazei).[13][14] Two case-control studies showed a strong correlation between mushroom consumption and reduced risk of breast cancer.[15][16] A study noted Flammulina velutipes (enokitake) producers had statistically lower cancer rates.[17]

19 species of endophytic fungi can synthesize paclitaxel, one of the most important anticancer drugs known. A fungus was the original source of griseofulvin and Fusarium oxysporum was reported producing vinblastine. Griseofulvin, taxol, and vinblastine, share the same anticancer mechanism, halting cell division at mitosis, by inhibiting microtubule activity.[18]

Anticholesterol activity and statins

Laetiporus sulphureus (left) Polyozellus multiplex (right)
Cantharellus cibarius (left) Lactarius camphoratus (right)

The first statins discovered mevastatin, and lovastatin, were found in non-mushroom forming fungi. Later, Pleurotus ostreatus (oyster mushroom) was found to produce lovastatin.[19] Monascus purpureus used to make red yeast rice, is capable of producing mevastatin, lovastatin, and monacolins L and J. Lentinula edodes (shiitake) contains the anticholesterol compound eritadenine.[20]

The first characterized zaragozic acids, were isolated from a sterile fungal culture of S. intermedia and L. elatius.[21]

Cognitive activities

Certain species of mushrooms contain psilocybin or psilocin, most notably Psilocybe (magic mushrooms). The compounds have also been found in members of the genera Gymnopilus, Panaeolus, Pluteus, and Inocybe, among others.[22] If consumed, psilocybin is dephosphorylated to psilocin, which closely resembles the neurotransmitter serotonin. Psilocin interacts with serotonin receptors as a partial, non-selective, agonist.[23]

Hericium erinaceus (left) Hypsizygus tessellatus (right)

The rye fungus Claviceps purpurea (ergot) can produce ergotism if eaten, but nevertheless has led to the production of certain drugs. Drugs produced from Claviceps purpurea, include lisuride, pergolide, cabergoline, bromocriptine, intended for Parkinson's disease; cafergot, dihydroergotamine, methysergide, ergotamine, intended for headaches; and hydergine, intended for dementia. Claviceps purpurea was used for the first synthesis of lysergic acid diethylamide (LSD-25).

Polyozellus multiplex (blue chanterelle) contains kynapcins and polyozellin.[24][25][26][27] Boletus badius (bay bolete) contains L-theanine.[28] A small double-blind, placebo-controlled clinical trial, published in Phytotherapy Research in 2009, showed Hericium erinaceus (lion's mane) improved cognitive function. A small placebo-controlled study published in Biomedical Research in 2010, indicated Hericium erinaceus promoted mental well-being.

Antiviral, antifungal, antibacterial, activities

Fungi create and secrete an array of antiviral, antibacterial, antifungal, and antiparasitic compounds. Antibiotic compounds isolated from mushrooms includes, coprinol, campestrin, ganomycin, sparassol, armillaric acid, cortinellin, and ustilagic acid. Non-mushroom forming fungi were the original source of the antibiotics penicillin, cephalosporin, fusidic acid, and verticillin A. Non-mushroom forming fungi were used to develop the antifungals caspofungin, micafungin, griseofulvin, anidulafungin.

Mushrooms with reported in vitro antiviral, antibacterial, antifungal, and antiparasitic activities are shown in the table below.

Glycemic activities

Ganoderma applanatum (left) Agaricus campestris (right)
Fistulina hepatica (left) Terfeziaceae (right)
Boletus badius (left) Ustilago maydis (right)

Researchers reported Grifola frondosa contains alpha-glucosidase inhibitors.[75] Animal research and a small clinical trial noted Grifola frondosa (maitake) may lower blood sugar levels.[76][77][78][79][80][81] Animal research and small clinical studies have shown that the following mushrooms may lower elevated blood sugar levels; Tremella fuciformis (white jelly fungus),[82][83][84] Poria cocos,[85] Ganoderma lucidum (mannentake),[86][87] Auricularia auricula-judae (jelly ear),[88] Agaricus campestris (meadow mushroom),[89] Agaricus subrufescens (agaricus blazei),[90][91][92][93][93] Inonotus obliquus (chaga),[94] Hericium erinaceus (lion's mane),[95] Agrocybe aegerita (pioppino),[96] Coprinus comatus (shaggy mane),[97] cordyceps.[98][99][100][101][102]

Vitamin D and ergothioneine

Mushrooms briefly exposed to UV light, can generate significant amounts of vitamin D2 from ergosterol.[103] Dole produces an Agaricus bisporus (portobello) powdered food condiment, that contains 150% DV vitamin D2 per teaspoon.[2] Grifola frondosa (maitake), Cantharellus cibarius (chanterelle)[104] and Lentinula edodes (shiitake) contain high levels of vitamin D2 after UV light exposure.[105][106][107]

Ergothioneine, an antioxidant that is known to accumulate in certain parts of the body, is present in Flammulina velutipes (enokitake)[108] and Agaricus bisporus.[109]

Antihormone and anti-inflammatory activity

Geastrum saccatum (left) Russula delica (right)
Kuehneromyces mutabilis (left) Pleurotus pulmonarius (right)

A clinical study with 21 ulcerative colitis and Crohn's disease patients showed an extract of Agaricus subrufescens (agaricus blazei) had an anti-inflammatory effect.[110] Animals studies noted extracts of Fomes fomentarius (amadou), Phellinus linteus (mesima), Ganoderma lucidum (mannentake), and Inonotus obliquus (chaga) could reduce inflammation.[111][112][113][114][115] In cell culture, extracts of Geastrum saccatum (rounded earthstar),[116]Agrocybe aegerita (pioppino),[117] and Grifola frondosa (maitake),[118] inhibited the pro-inflammatory enzyme cyclooxygenase and Piptoporus betulinus (birch polypore) demonstrated anti-inflammatory activity.[119][120] Researchers noted extracts of Pholiota squarrosa (shaggy scalycap), could act as xanthine oxidase inhibitors.

In vitro, mushroom extracts have shown potential to inhibit hormone production. Greatest in vitro inhibition of aromatase, and 5-alpha reductase, was observed with Agaricus bisporus (portobello) and Ganoderma lucidum (mannentake), respectively.[13][121][122]

Edible species

Agaricus bisporus (Portobello, white button, champignon)

Agaricus bisporus (left) Agaricus subrufescens (right)

Mouse studies reported Agaricus bisporus consumption led to immune system stimulation,[123][124] while an in vitro study reported activity against various cancer cell lines.[125] Agaricus bisporus is reported to have the greatest antiaromatase activity in vitro.

Agaricus subrufescens (A. blazei, A. brasiliensis, A. sylvaticus)

In Japan, extracts from Agaricus subrufescens are viewed as anticancer compounds. An article from 2001, estimated usage in Japan at a half a million citizens.[126][127] A review from 2008, noted there is evidence for using Agaricus subrufescens extracts for certain cancers.[93][128][129][130]

Agrocybe aegerita (Pioppino mushroom)

Agrocybe aegerita (left) Auricularia auricula-judae (right)

Agrocybe aegerita may have anticancer and immune enhancing activities.[131]

Auricularia auricula-judae (Jelly ear, kikurage) Auricularia polytricha (Cloud ear)

Published research indicates Auricularia auricula-judae and Auricularia polytricha may have antitumour, hypoglycemic, anticoagulant and cholesterol-lowering activities.[3][4]

Boletus edulis (Porcini, cep, borovik, steinpilz, herrenpilz)

Boletus edulis (left) Coprinus comatus (right)

A lectin from Boletus edulis was found to inhibit several malignant cell lines and bind to a neoplastic cell specific T-antigen disaccharide.[132]

Coprinus comatus (Shaggy mane, ink cap)

An extract of Coprinus comatus inhibited the proliferation and viability of a androgen-sensitive human prostate adenocarcinoma cell line.[133]

Flammulina velutipes (Enokitake, winter mushroom)

Flammulina velutipes (cultivated vs. wild)

Flammulina velutipes contains compounds with antitumor activity, and epidemiological studies in Japan have associated the mushroom with lower cancer rates.[17] Animal research showed the mushroom may inhibit cancer development.[134][135]

Grifola frondosa (Maitake, hen-of-the-woods)

Grifola frondosa (left) Lentinula edodes (right)

A review by Massachusetts General Hospital, advocated researching Grifola frondosa in relation to cancer, diabetes, and immune function.[136] Grifola frondosa contains alpha glucosidase inhibitors[137] and has been featured in clinical trials.[138] Researched extracts of Grifola frondosa include grifolan and maitake D-fraction.[139]

Lentinula edodes (Shiitake, black forest mushroom)

Lentinan and Active Hexose Correlated Compound (AHCC), are isolates of Lentinula edodes. "There have been numerous clinical trials of Lentinan in Japan, though none have been placebo-controlled and double-blinded. However, Lentinan has been approved for clinical use in Japan for many years, and is manufactured by several pharmaceutical companies. Intraperitoneal lentinan is widely used as an adjuvant treatment for certain cancers in Japan and China."[140] Research has shown AHCC may offer antiviral activity.[141][142][143]

Lentinus edodes mycelia (LEM) extract, is a researched extract derived from the mushroom.[144]

Morchella esculenta (Morel)

Morchella (left) Phallus impudicus (right)

Morchella esculenta contains small amounts of hydrazine, which is destroyed upon cooking. A galactomannan from Morchella esculenta stimulated immune function in vitro.[145]

Phallus impudicus

Although Phallus impudicus is not considered a choice edible, a review noted extracts from the mushroom have anti-tumor activity.[146] The mushroom was also studied clinically, in relation to venous thrombosis.[147]

Pleurotus djamor (Pink oyster mushroom)

Pleurotus djamor (left) Pleurotus eryngii (right)

An extract of Pleurotus djamor was found to inhibit proliferation of hepatoma cells and breast cancer cells in vitro.[148]

Pleurotus eryngii (King oyster mushroom, eringi)

An extract of Pleurotus eryngii stimulated immune function in vitro.[149]

Pleurotus ostreatus (Oyster mushroom, hiratake)

Pleurotus ostreatus (left) Sparassis crispa (right)

Pleurotus ostreatus contains the statin lovastatin.[150][151] A number of animal studies have shown Pleurotus ostreatus consumption lowers cholesterol levels. Research with Pleurotus ostreatus demonstrated activity against various cancer cell lines[152] and animals studies have shown an anticancer effect.[153][154]

Sparassis crispa (Cauliflower mushroom)

Animal studies have shown Sparassis crispa has potential anticancer and immune enhancing activities.[155][156][157][158][159]

Tremella fuciformis (White jelly fungus, silver ear)

Tremella fuciformis (left) Tremella mesenterica (right)

Tremella fuciformis is occasionally used in Chinese medicine as an immune tonic and for treating exhaustion.

Tremella mesenterica (Golden jelly fungus)

Tremella mesenterica has potential anticancer and immune enhancing activities.[160][161][162]

Tricholoma matsutake (Matsutake)

Tricholoma matsutake (left) Astraeus hygrometricus(right)

Tricholoma matsutake may enhance immune function via an alpha-glucan polysaccharide.[163][164][165][166][167][168][169]

Volvariella volvacea (Paddy straw mushroom)

Volvariella volvacea is a mushroom used extensively in Thai and Vietnamese cuisines. Recent studies have indicated possible anticancer and immunomodulating activities.[170][171]

Extractable species

Mushroom cell walls contain chitin, which is indigestible. To break down chitin, and allow digestion, a heated extraction process is required. The following mushrooms can be consumed only in the form of tea, herbal tonic, or medicinal soup.

Antrodia camphorata (Zhang-zhī)

Antrodia camphorata is a medicinal mushroom associated with Taiwan. Research has noted the mushroom may have hepatoprotective, antihypertensive, anti-hyperlipidemic, immuno-modulatory, anticancer, anti-inflammatory and antioxidant activities.[172]

Astraeus hygrometricus (Earthstar)

Astraeus hygrometricus is documented in Chinese and Indian herbal medicine. Research has shown the mushroom may contain immunomodulators.[173] In a mouse model, the mushroom demonstrated anticancer properties.[174]


Cordyceps militaris (left) Ganoderma lucidum (right)

The immunosuppressant drug, ciclosporin, was isolated from Tolypocladium inflatum, an anamorph of Cordyceps subsessilis. Cordycepin, was isolated from Cordyceps sinensis and Cordyceps militaris.[175] Limited clinical data supports the use of cordyceps for fatigue, bronchitis and coughs.[176] Cordyceps may improve exercise performance in healthy older subjects.[177]

Fomes fomentarius (Amadou, tinder conk)

A review noted several pharmacopoeias from Hungary, China, and India, include Fomes fomentarius.[5] Fomes fomentarius was found with Ötzi the Iceman. Research with mice showed an extract of Fomes fomentarius altered immune function and in vitro research showed an anticancer effect.[178][179]

Ganoderma lucidum (Mannentake, língzhī, reishi)

Ganoderma lucidum is described in Shennong Ben Cao Jing, Bencao Gangmu, and occasionally seen in Chinese artwork.

Research demonstrated Ganoderma lucidum may have anticancer[180][181] and immune system enhancing properties.[182][183] Animal studies have noted Ganoderma lucidum have hepatoprotective activities.[184][185] Research has shown that Ganoderma lucidum contains compounds that may act as ACE inhibitors,[186] inihibit blood platelets,[187] and have antifibrotic activity.[188] According to Memorial Sloan-Kettering, "in clinical studies, Ganoderma lucidum increased plasma antioxidant capacity and enhanced immune responses in advance-stage cancer patients."[189]

Hydnellum peckii (Red-juice tooth)

Hydnellum peckii (left) Poria cocos (right)

Hydnellum peckii contains atromentin, an anticoagulant.[190][191]

Inonotus obliquus (Chaga)

Inonotus obliquus (left) Peziza vesiculosa(right)

A Russian extract of Inonotus obliquus is known as befungin.[192] Russian literature nobel prize laureate, Alexandr Solzhenitsyn, wrote two pages on the speculated anticancer activities of Inonotus obliquus in Cancer Ward. Inonotus obliquus contains melanin and betulin, a precursor to the anticancer compound betulinic acid.[12]

An experiment with mice, and an Inonotus obliquus extract, showed a 4-fold increase in survival rate of melanoma. Additional research indicates potential anticancer activity.[94][193][194][195][196][197][198]

Peziza vesiculosa (Orange fairy-cup)

Research has shown Peziza vesiculosa may have anticancer and immune enhancing activities.[199][200][201][202][203]

Phellinus linteus (Meshimakobu, sang-hwang)

Phellinus linteus is a medicinal mushroom associated with Korea. "Scientists have demonstrated that the extracts from fruit-bodies or mycelium of Phellinus linteus not only stimulate the hormonal and cell-mediated immune function and quench the inflammatory reactions caused by a variety of stimuli, but also suppress the tumor growth and metastasis. Mounting evidence from different research groups has shown that Phellinus linteus induces apoptosis in a host of murine and human carcinomas without causing any measurable toxic effects to their normal counterparts."[204]

Phellinus linteus is known to contain interfungins A, a compound that may protect against hyperglycemia-mediated protein damage.[205]

Piptoporus betulinus (Birch polypore, birch bracket)

Piptoporus betulinus (left) Fomes fomentarius (right)

Piptoporus betulinus may have anticancer properties.[206] Ötzi the Iceman was found carrying Piptoporus betulinus wrapped in a leather string. Researchers have noted the mushroom was most likely used medicinally, after Ötzi was noted to be infected by an intestinal parasite.[207]

Polyporus umbellatus (Zhu-ling)

Polyporus umbellatus(left) Schizophyllum commune(right)

Polyporus umbellatus may have anticancer and immune enhancing activities.[208][209][210][211][212][213][214][215]

Poria cocos (Fu-ling, hoelen)

A review published in 2009, noted, Poria cocos may have anticancer and immune enhancing activities.[216]

Schizophyllum commune (Split gill)

"Schizophyllan an isolate of Schizophyllum commune, is relatively similar to lentinan in composition and biological activity, and its mechanism of immunomoduation and anti-tumour action appears to be quite similar."[217]

Sclerotinia sclerotiorum

SSG is a a highly branched beta-1,3-glucan extract of Sclerotinia sclerotiorum. SSG has been researched for possible health benefits.

Trametes gibbosa (Daedalea gibbosa)

Trametes gibbosa (left) Trametes versicolor (right)

An extract of Daedalea gibbosa inhibited chronic myeloid leukemia in a mouse model.[218]

Trametes versicolor (Turkey tail, yun-zhī, kawaratake)

Polysaccharide-K (Krestin, PSK) and polysaccharide peptide (PSP), are isolates of Trametes versicolor.

According to MD Anderson Cancer Center, "PSP may have positive effects upon immune parameters, percent body fat and disease progression in patients with non-small cell lung cancer based upon one randomized and blinded controlled clinical trial. PSK may have positive effects upon disease and survival outcomes based upon the preponderance of findings from randomized controlled studies; however, the lack of blinding in these trials is a cause of concern."[219]

Heavy metals

Mushrooms produced in contaminated conditions can accumulate, even hyper-accumulate, particular heavy metals.

The following is a list of observed relationships between mushrooms and heavy metal accumulations. Agaricus bisporus cadmium, mercury. Agaricus subrufescens cadmium, mercury. Agaricus campestris cadmium, lead (10x), mercury (10x). Boletus edulis cadmium (10x), cesium (including Cs-137), lead, mercury (250x), copper. Cantharellus cibarius cesium (2x). Coprinus comatus arsenic (21x), cadmium (8x), mercury (27x). Flammulina velutipes arsenic. Hydnellum peckii cesium. Morchella lead (70-100x). Pleurotus ostreatus cadmium, mercury (65-140x). Pleurotus pulmonarius cadmium, mercury, copper. Trametes versicolor mercury.[220]

See also


  1. ^ "Coriolus Versicolor". About Herbs, Botanicals & Other Products. Memorial Sloan-Kettering Cancer Center. 
  2. ^ Ng, T. B. (1998). "A review of research on the protein-bound polysaccharide (polysaccharopeptide, PSP) from the mushroom Coriolus versicolor (basidiomycetes: Polyporaceae)". General Pharmacology: the Vascular System 30 (1): 1–4. doi:10.1016/S0306-3623(97)00076-1. PMID 9457474. 
  3. ^ "Lentinan". About herbs. Memorial Sloan–Kettering Cancer Center. 2009. 
  4. ^ Sullivan, Richard; Smith, John E.; Rowan, Neil J. (2006). "Medicinal Mushrooms and Cancer Therapy: translating a traditional practice into Western medicine". Perspectives in Biology and Medicine 49 (2): 159–70. doi:10.1353/pbm.2006.0034. PMID 16702701. 
  5. ^ Borchers, A. T.; Krishnamurthy, A.; Keen, C. L.; Meyers, F. J.; Gershwin, M. E. (2008). "The Immunobiology of Mushrooms". Experimental Biology and Medicine 233 (3): 259–76. doi:10.3181/0708-MR-227. PMID 18296732. 
  6. ^ "Maitake Mushroom". Complementary and Alternative Medicine : Diet and Nutrition. American Cancer Society. 2008. Retrieved 2011-03-08. 
  7. ^ a b Zheng, Weifa; Miao, Kangjie; Liu, Yubing; Zhao, Yanxia; Zhang, Meimei; Pan, Shenyuan; Dai, Yucheng (2010). "Chemical diversity of biologically active metabolites in the sclerotia of Inonotus obliquus and submerged culture strategies for up-regulating their production". Applied Microbiology and Biotechnology 87 (4): 1237–54. doi:10.1007/s00253-010-2682-4. PMID 20532760. 
  8. ^ "Vegetable of the month: Mushrooms". US Centers for Disease Control. Retrieved 2011-01-14. 
  9. ^ Muhammad. "Book 23, Chapter 27". Hadith. Sahih Muslim. pp. 5084–9. ISBN 0704503034. 
  10. ^ Carod-Artal, F. J. (2011). "Alucinógenos en las culturas precolombinas mesoamericanas [Hallucinogenic drugs in pre-Columbian Mesoamerican cultures]" (in Spanish). Neurología. doi:10.1016/j.nrl.2011.07.003. PMID 21893367. 
  11. ^ Wasser, Solomon P. (2010). "Current findings, future trends, and unsolved problems in studies of medicinal mushrooms". Applied Microbiology and Biotechnology 89 (5): 1323–32. doi:10.1007/s00253-010-3067-4. PMID 21190105. 
  12. ^ a b Gao, Y; Xu, H; Lu, Z; Xu, Z (2009). "Quantitative determination of steroids in the fruiting bodies and submerged-cultured mycelia of Inonotus obliquus". Se pu 27 (6): 745–9. PMID 20352924. 
  13. ^ a b Chen, S.; Oh, S.-R.; Phung, S.; Hur, G.; Ye, J. J.; Kwok, S. L.; Shrode, G. E.; Belury, M. et al. (2006). "Anti-Aromatase Activity of Phytochemicals in White Button Mushrooms (Agaricus bisporus)". Cancer Research 66 (24): 12026–34. doi:10.1158/0008-5472.CAN-06-2206. PMID 17178902. 
  14. ^ W. J. Jang S. W. Hyung (2004). "Production of natural c9,t11 conjugated linoleic acid (c9,t11 CLA) by submerged liquid culture of mushrooms". Division of Applied Life Science (BK21), Graduate School, Gyeongsang National University, Jinju, 660-701, South Korea. [unreliable source?]
  15. ^
  16. ^ Hong, Seo Ah; Kim, Kirang; Nam, Seok-Jin; Kong, Gu; Kim, Mi Kyung (2008). "A case–control study on the dietary intake of mushrooms and breast cancer risk among Korean women". International Journal of Cancer 122 (4): 919. doi:10.1002/ijc.23134. 
  17. ^ a b Monro, Jean (2003). "Treatment of Cancer with Mushroom Products". Archives of Environmental Health: an International Journal 58 (8): 533–7. doi:10.3200/AEOH.58.8.533-537. PMID 15259434. 
  18. ^
  19. ^ Campbell, Chantel D.; Vederas, John C. (2010). "Biosynthesis of lovastatin and related metabolites formed by fungal iterative PKS enzymes". Biopolymers 93 (9): 755–63. doi:10.1002/bip.21428. PMID 20577995. 
  20. ^ Bisen, P.S.; Baghel, R.K.; Sanodiya, B.S.; Thakur, G.S.; Prasad, G.B.K.S. (2010). "Lentinus edodes: A Macrofungus with Pharmacological Activities". Current Medicinal Chemistry 17 (22): 2419–30. doi:10.2174/092986710791698495. PMID 20491636. 
  21. ^ Bergstrom, J D; Dufresne, C; Bills, G F; Nallin-Omstead, M; Byrne, K (1995). "Discovery, Biosynthesis, and Mechanism of Action of the Zaragozic Acids: Potent Inhibitors of Squalene Synthase". Annual Review of Microbiology 49: 607–39. doi:10.1146/annurev.mi.49.100195.003135. PMID 8561474. 
  22. ^ Bresinsky, Andreas; Besl, Helmut (1990). A colour atlas of poisonous fungi: a handbook for pharmacists, doctors, and biologists. CRC Press. ISBN 978-0-7234-1576-3. [page needed]
  23. ^ Aghajanian, G; Marek, GJ (1999). "Serotonin and Hallucinogens". Neuropsychopharmacology 21 (2): 16S–23S. doi:10.1016/S0893-133X(98)00135-3. PMID 10432484. 
  24. ^ Hwang, JS; Song, KS; Kim, WG; Lee, TH; Koshino, H; Yoo, ID (1997). "Polyozellin, a new inhibitor of prolyl endopeptidase from Polyozellus multiplex". The Journal of antibiotics 50 (9): 773–7. PMID 9360624. [non-primary source needed]
  25. ^ Lee, HJ; Rhee, IK; Lee, KB; Yoo, ID; Song, KS (2000). "Kynapcin-12, a new p-terphenyl derivative from Polyozellus multiplex, inhibits prolyl endopeptidase". The Journal of antibiotics 53 (7): 714–9. PMID 10994814. [non-primary source needed]
  26. ^ Kim, SI; Park, IH; Song, KS (2002). "Kynapcin-13 and -28, new benzofuran prolyl endopeptidase inhibitors from polyozellus multiplex". The Journal of antibiotics 55 (7): 623–8. PMID 12243451. [non-primary source needed]
  27. ^ Song, Kyung-Sik; Raskin, Ilya (2002). "A Prolyl Endopeptidase-Inhibiting Benzofuran Dimer fromPolyozellusmultiflex". Journal of Natural Products 65 (1): 76–8. doi:10.1021/np010194b. PMID 11809072. [non-primary source needed]
  28. ^ "l-theanine". 
  29. ^ Faccin, L.C.; Benati, F.; Rincão, V.P.; Mantovani, M.S.; Soares, S.A.; Gonzaga, M.L.; Nozawa, C.; Carvalho Linhares, R.E. (2007). "Antiviral activity of aqueous and ethanol extracts and of an isolated polysaccharide from Agaricus brasiliensis against poliovirus type 1". Letters in Applied Microbiology 45 (1): 24–8. doi:10.1111/j.1472-765X.2007.02153.x. PMID 17594456. [non-primary source needed][unreliable medical source?]
  30. ^ Sorimachi, Kenji; Ikehara, Yukari; Maezato, Genzo; Okubo, Akira; Yamazaki, Sunao; Akimoto, Kazumi; Niwa, Akira (2001). "Inhibition by Agaricus blazei Murill Fractions of Cytopathic Effect Induced by Western Equine Encephalitis(WEE) Virus on VERO Cells in Vitro". Bioscience, Biotechnology, and Biochemistry 65 (7): 1645–7. doi:10.1271/bbb.65.1645. PMID 11515550. [non-primary source needed][unreliable medical source?]
  31. ^ Sun, H; Zhao, CG; Tong, X; Qi, YP (2003). "A lectin with mycelia differentiation and antiphytovirus activities from the edible mushroom Agrocybe aegerita". Journal of biochemistry and molecular biology 36 (2): 214–22. doi:10.5483/BMBRep.2003.36.2.214. PMID 12689522. [non-primary source needed]
  32. ^ Kandefer-Szerszen M, Kawecki Z, Salata B, Witek M (1980). "Grzyby kapeluszowe jako źródło substancji o aktywności przeciwwirusowej [Mushrooms as a source of substances with antiviral activity]" (in Polish). Acta Mycologica 16 (2): 215–20. ISSN 0001-625X. [verification needed]
  33. ^ Li D, Zhao W-H, Kong B-H, Ye M, Chen H-R (2009). "Inhibition effects of the extract and polysaccharide in macrofungus on TMV". Journal of Yunnan Agricultural University 24 (2): 175–80. ISSN 1004-390X. [verification needed][non-primary source needed]
  34. ^ Cieniecka-Rosłonkiewicz, Anna; Sas, Agnieszka; Przybysz, ElżBieta; Morytz, Bolesław; Syguda, Anna; Pernak, Juliusz (2007). "Ionic Liquids for the Production of Insecticidal and Microbicidal Extracts of the FungusCantharellus cibarius". Chemistry & Biodiversity 4 (9): 2218–24. doi:10.1002/cbdv.200790179. PMID 17886840. [non-primary source needed]
  35. ^ a b Wong, Jack H.; Ng, Tzi Bun; Wang, Hexiang; Sze, Stephen Cho Wing; Zhang, Kalin Yanbo; Li, Qi; Lu, Xiaoxu (2010). "Cordymin, an antifungal peptide from the medicinal fungus Cordyceps militaris". Phytomedicine 18 (5): 387–92. doi:10.1016/j.phymed.2010.07.010. PMID 20739167. [non-primary source needed][unreliable medical source?]
  36. ^ Tsuge, N; Mori, T; Hamano, T; Tanaka, H; Shin-Ya, K; Seto, H (1999). "Cinnatriacetins A and B, new antibacterial triacetylene derivatives from the fruiting bodies of Fistulina hepatica". The Journal of antibiotics 52 (6): 578–81. PMID 10470684. [non-primary source needed]
  37. ^ a b Kandefer-Szerszeń, M; Kawecki, Z; Guz, M (1979). "Fungal nucleic acids as interferon inducers". Acta microbiologica Polonica 28 (4): 277–91. PMID 94746. [non-primary source needed][unreliable medical source?]
  38. ^ a b c Moradali, Mohammad-Fata; Mostafavi, Hossien; Hejaroude, Ghorban-Ali; Tehrani, Abbas Sharifi; Abbasi, Mehrdad; Ghods, Shirin (2006). "Investigation of Potential Antibacterial Properties of Methanol Extracts from Fungus Ganoderma applanatum". Chemotherapy 52 (5): 241–4. doi:10.1159/000094866. PMID 16899973. [non-primary source needed][unreliable medical source?]
  39. ^ Adams, Michael; Christen, Marco; Plitzko, Inken; Zimmermann, Stefanie; Brun, Reto; Kaiser, Marcel; Hamburger, Matthias (2010). "Antiplasmodial Lanostanes from the Ganoderma lucidumMushroom". Journal of Natural Products 73 (5): 897–900. doi:10.1021/np100031c. PMID 20384295. [non-primary source needed]
  40. ^ a b Wang, Hexiang; Ng, T.B. (2006). "Ganodermin, an antifungal protein from fruiting bodies of the medicinal mushroom Ganoderma lucidum". Peptides 27 (1): 27–30. doi:10.1016/j.peptides.2005.06.009. PMID 16039755. [non-primary source needed][unreliable medical source?]
  41. ^ a b c d Eo, S; Kim, YS; Lee, CK; Han, SS (1999). "Antiviral activities of various water and methanol soluble substances isolated from Ganoderma lucidum". Journal of Ethnopharmacology 68 (1–3): 129–36. doi:10.1016/S0378-8741(99)00067-7. PMID 10624872. [non-primary source needed][unreliable medical source?]
  42. ^ a b Eo, S; Kim, YS; Lee, CK; Han, SS (2000). "Possible mode of antiviral activity of acidic protein bound polysaccharide isolated from Ganoderma lucidum on herpes simplex viruses". Journal of Ethnopharmacology 72 (3): 475–81. doi:10.1016/S0378-8741(00)00266-X. PMID 10996289. [non-primary source needed][unreliable medical source?]
  43. ^ Gu, C; Li, J; Chao, F; Jin, M; Wang, X; Shen, Z (2007). "Isolation, identification and function of a novel anti-HSV-1 protein from Grifola frondosa". Antiviral Research 75 (3): 250–7. doi:10.1016/j.antiviral.2007.03.011. PMID 17475344. [non-primary source needed][unreliable medical source?]
  44. ^ Gu, Chang-Qing; Li, Jun-Wen; Chao, Fu-Huan (2006). "Inhibition of hepatitis B virus by D-fraction from Grifola frondosa: Synergistic effect of combination with interferon-α in HepG2 2.2.15". Antiviral Research 72 (2): 162–5. doi:10.1016/j.antiviral.2006.05.011. PMID 16846649. [non-primary source needed]
  45. ^ Akihisa, Toshihiro; Franzblau, Scott Gary; Tokuda, Harukuni; Tagata, Masaaki; Ukiya, Motohiko; Matsuzawa, Tsunetomo; Metori, Koichi; Kimura, Yumiko et al. (2005). "Antitubercular Activity and Inhibitory Effect on Epstein-Barr Virus Activation of Sterols and Polyisoprenepolyols from an Edible Mushroom, Hypsizigus marmoreus". Biological & Pharmaceutical Bulletin 28 (6): 1117–9. doi:10.1248/bpb.28.1117. [non-primary source needed][unreliable medical source?]
  46. ^ Mentel, R; Meinsen, D; Pilgrim, H; Herrmann, B; Lindequist, U (1994). "In vitro antiviral effect of extracts of Kuehneromyces mutabilis on influenza virus". Die Pharmazie 49 (11): 859–60. PMID 7838873. [verification needed][non-primary source needed]
  47. ^ Ershova EIu, Tikhonova OV, Lur'e LM, Efremenkova OV, Kamzolkina OV, Dudnik IuV (2003). "Antimikrobnaia aktivnost' shtammov Laetiporus sulphureus v usloviiakh glubinnogo kul'tivirovaniia [Antimicrobial activity of Laetiporus sulphureus strains grown in submerged culture]" (in Russian). Antibiot Khimioter 48 (1): 18–22. ISSN 0235-2990. PMID 12741318. [non-primary source needed][verification needed]
  48. ^ Dulger, B; Ergul, CC; Gucin, F (2002). "Antimicrobial activity of the macrofungus Lepista nuda". Fitoterapia 73 (7–8): 695–7. doi:10.1016/S0367-326X(02)00233-2. PMID 12490232. [non-primary source needed]
  49. ^ a b Odani, Shoji; Tominaga, Kei; Kondou, Satomi; Hori, Hiroshi; Koide, Takehiko; Hara, Saburo; Isemura, Mamoru; Tsunasawa, Susumu (1999). "The inhibitory properties and primary structure of a novel serine proteinase inhibitor from the fruiting body of the basidiomycete, Lentinus edodes". European Journal of Biochemistry 262 (3): 915–23. doi:10.1046/j.1432-1327.1999.00463.x. PMID 10411656. [non-primary source needed][unreliable medical source?]
  50. ^ Ngai, PH; Ng, TB (2003). "Lentin, a novel and potent antifungal protein from shitake mushroom with inhibitory effects on activity of human immunodeficiency virus-1 reverse transcriptase and proliferation of leukemia cells". Life sciences 73 (26): 3363–74. doi:10.1016/j.lfs.2003.06.023. PMID 14572878. [non-primary source needed]
  51. ^ Sarkar, S; Koga, J; Whitley, R; Chatterjee, S (1993). "Antiviral effect of the extract of culture medium of Lentinus edodes mycelia on the replication of herpes simplex virus type 1". Antiviral Research 20 (4): 293–303. doi:10.1016/0166-3542(93)90073-R. PMID 8387258. [non-primary source needed]
  52. ^ Schlegel, B; Luhmann, U; Härtl, A; Gräfe, U (2000). "Piptamine, a new antibiotic produced by Piptoporus betulinus Lu 9-1". The Journal of antibiotics 53 (9): 973–4. PMID 11099232. [non-primary source needed][unreliable medical source?]
  53. ^ Fu, M; Lin, J; Wu, Z; Lin, Q; Xie, L (2003). "Screening of proteins anti-tobacco mosaic virus in Pleurotus eryngii". Wei sheng wu xue bao 43 (1): 29–34. PMID 16276868. [non-primary source needed][unreliable medical source?]
  54. ^ m. El-Fakharany, Esmail; m. Haroun, Bakry; Ng, Tzi.Bun; m. Redwan, EL-Rashdy (2010). "Oyster Mushroom Laccase Inhibits Hepatitis C Virus Entry into Peripheral Blood Cells and Hepatoma Cells". Protein and Peptide Letters 17 (8): 1031–9. doi:10.2174/092986610791498948. PMID 20156183. [non-primary source needed]
  55. ^ Stadler, Marc; Mayer, Anke; Anke, Heidrun; Sterner, Olov (2007). "Fatty Acids and Other Compounds with Nematicidal Activity from Cultures of Basidiomycetes". Planta Medica 60 (2): 128–32. doi:10.1055/s-2006-959433. PMID 8202563. [non-primary source needed]
  56. ^ a b Li, JJ; Tu, YY; Tong, JZ; Wang, PT (2000). "Inhibitory activity of Dianthus superbus L. and 11 kinds of diuretic Traditional Chinese medicines for urogenital Chlamydia trachomatis in vitro". Zhongguo Zhong yao za zhi 25 (10): 628–30. PMID 12516457. [non-primary source needed]
  57. ^ Woodward, S.; Sultan, H. Y.; Barrett, D. K.; Pearce, R. B. (1993). "Two new antifungal metabolites produced by Sparassis crispa in culture and in decayed trees". Microbiology 139: 153–9. doi:10.1099/00221287-139-1-153. [non-primary source needed]
  58. ^ Chellal, A; Lukasova, E (1995). "Evidence for antibiotics in the two Algerien truffles Terfezia and Tirmania". Die Pharmazie 50 (3): 228–9. PMID 7732062. [non-primary source needed][verification needed]
  59. ^ Janakat, S.; Al-Fakhiri, S.; Sallal, A.-K. (2004). "A promising peptide antibiotic fromTerfezia claveryi aqueous extract againstStaphylococcus aureus in vitro". Phytotherapy Research 18 (10): 810–3. doi:10.1002/ptr.1563. PMID 15551385. [non-primary source needed][unreliable medical source?]
  60. ^ Janakat, SM; Al-Fakhiri, SM; Sallal, AK (2005). "Evaluation of antibacterial activity of aqueous and methanolic extracts of the truffle Terfezia claveryi against Pseudomonas aeruginosa". Saudi medical journal 26 (6): 952–5. PMID 15983681. [non-primary source needed][unreliable medical source?]
  61. ^ Rougieux, R (1963). "Antibiotic and stimulating actions of the desert truffle (Terfezia boudieri chatin)". Annales de l'Institut Pasteur 105: 315–8. PMID 14048721. [non-primary source needed][unreliable medical source?]
  62. ^ Zheng, S; Li, C; Ng, T; Wang, H (2007). "A lectin with mitogenic activity from the edible wild mushroom Boletus edulis". Process Biochemistry 42 (12): 1620–24. doi:10.1016/j.procbio.2007.09.004. [non-primary source needed][unreliable medical source?]
  63. ^ Wang, H; Ng, TB (2001). "Isolation and characterization of velutin, a novel low-molecular-weight ribosome- inactivating protein from winter mushroom (Flammulina velutipes) fruiting bodies". Life Sciences 68 (18): 2151–8. doi:10.1016/S0024-3205(01)01023-2. PMID 11324720. [non-primary source needed][unreliable medical source?]
  64. ^ Li, Yanrui; Zhang, Guoqing; Ng, Tzi Bun; Wang, Hexiang (2010). "A Novel Lectin with Antiproliferative and HIV-1 Reverse Transcriptase Inhibitory Activities from Dried Fruiting Bodies of the Monkey Head Mushroom Hericium erinaceum". Journal of Biomedicine and Biotechnology 2010: 1. doi:10.1155/2010/716515. [non-primary source needed]
  65. ^ Ichimura, Toshiaki; Watanabe, Osamu; Maruyama, Susumu (1998). "Inhibition of HIV-1 Protease by Water-Soluble Lignin-Like Substance from an Edible Mushroom, Fuscoporia obliqua". Bioscience, Biotechnology, and Biochemistry 62 (3): 575–7. doi:10.1271/bbb.62.575. [non-primary source needed]
  66. ^ a b c Wang, Jianbin; Wang, H.X.; Ng, T.B. (2007). "A peptide with HIV-1 reverse transcriptase inhibitory activity from the medicinal mushroom Russula paludosa". Peptides 28 (3): 560–5. doi:10.1016/j.peptides.2006.10.004. PMID 17113195. [non-primary source needed]
  67. ^ Gordon, M; Bihari, B; Goosby, E; Gorter, R; Greco, M; Guralnik, M; Mimura, T; Rudinicki, V et al. (1998). "A placebo-controlled trial of the immune modulator, lentinan, in HIV-positive patients: a phase I/II trial". Journal of medicine 29 (5–6): 305–30. PMID 10503166. [non-primary source needed][unreliable medical source?]
  68. ^ Tochikura, TS; Nakashima, H; Yamamoto, N (1989). "Antiviral agents with activity against human retroviruses". Journal of acquired immune deficiency syndromes 2 (5): 441–7. PMID 2477523. [non-primary source needed][unreliable medical source?]
  69. ^ Suzuki, H; Okubo, A; Yamazaki, S; Suzuki, K; Mitsuya, H; Toda, S (1989). "Inhibition of the infectivity and cytopathic effect of human immunodeficiency virus by water- soluble lignin in an extract of the culture medium of mycelia (LEM)". Biochemical and Biophysical Research Communications 160 (1): 367–73. doi:10.1016/0006-291X(89)91665-3. PMID 2469420. [non-primary source needed][unreliable medical source?]
  70. ^ Wang, H; Ng, TB (2000). "Isolation of a Novel Ubiquitin-like Protein from Pleurotus ostreatus Mushroom with Anti-Human Immunodeficiency Virus, Translation-Inhibitory, and Ribonuclease Activities". Biochemical and Biophysical Research Communications 276 (2): 587–93. doi:10.1006/bbrc.2000.3540. PMID 11027517. [non-primary source needed][unreliable medical source?]
  71. ^ Lee, Su-A; Hong, Seong-Karp; Suh, Chang-Il; Oh, Mi-Hwa; Park, Jeong-Ho; Choi, Byoung-Wook; Park, Seung-Won; Paik, Soon-Young (2010). "Anti-HIV-1 efficacy of extracts from medicinal plants". The Journal of Microbiology 48 (2): 249–52. doi:10.1007/s12275-009-0176-9. PMID 20437159. [non-primary source needed][unreliable medical source?]
  72. ^ Zhao, Shuang; Zhao, Yongchang; Li, Shuhong; Zhao, Jingkun; Zhang, Guoqing; Wang, Hexiang; Ng, Tzi Bun (2010). "A novel lectin with highly potent antiproliferative and HIV-1 reverse transcriptase inhibitory activities from the edible wild mushroom Russula delica". Glycoconjugate Journal 27 (2): 259–65. doi:10.1007/s10719-009-9274-5. PMID 20187295. [non-primary source needed]
  73. ^ Collins, R; Ng, TB (1997). "Polysaccharopeptide from Coriolus versicolor has potential for use against human immunodeficiency virus type 1 infection". Life Sciences 60 (25): PL383–7. doi:10.1016/S0024-3205(97)00294-4. PMID 9194694. [non-primary source needed][unreliable medical source?]
  74. ^ Hirabayashi, K; Iwata, S; Ito, M; Shigeta, S; Narui, T; Mori, T; Shibata, S (1989). "Inhibitory effect of a lichen polysaccharide sulfate, GE-3-S, on the replication of human immunodeficiency virus (HIV) in vitro". Chemical & pharmaceutical bulletin 37 (9): 2410–2. PMID 2575016. [non-primary source needed]
  75. ^ Matsuura, Hideyuki; Asakawa, Chikako; Kurimoto, Masanori; Mizutani, Junya (2002). "α-Glucosidase inhibitor from the seeds of balsam pear (Momordica charantia) and the fruit bodies of Grifola frondosa". Bioscience, Biotechnology, and Biochemistry 66 (7): 1576–8. doi:10.1271/bbb.66.1576. PMID 12224646. 
  76. ^ Konno, S; Tortorelis, DG; Fullerton, SA; Samadi, AA; Hettiarachchi, J; Tazaki, H (2001). "A possible hypoglycaemic effect of maitake mushroom on Type 2 diabetic patients". Diabetic Medicine 18 (12): 1010. doi:10.1046/j.1464-5491.2001.00532-5.x. PMID 11903406. 
  77. ^ Hong, Lei; Xun, Ma; Wutong, Wu (2007). "Anti-diabetic effect of an α-glucan from fruit body of maitake(Grifola frondosa)on KK-Ay mice". Journal of Pharmacy and Pharmacology 59 (4): 575–82. doi:10.1211/jpp.59.4.0013. PMID 17430642. 
  78. ^ Kubo, K; Aoki, H; Nanba, H (1994). "Anti-diabetic activity present in the fruit body of Grifola frondosa (Maitake). I". Biological & Pharmaceutical Bulletin 17 (8): 1106–10. doi:10.1248/bpb.17.1106. PMID 7820117. 
  79. ^ Lo, Hui-Chen; Hsu, Tai-Hao; Chen, Ching-Yi (2008). "Submerged culture mycelium and broth of Grifola frondosa improve glycemic responses in diabetic rats". The American Journal of Chinese Medicine 36 (2): 265–85. doi:10.1142/S0192415X0800576X. PMID 18457360. 
  80. ^ Manohar, V; Talpur, NA; Echard, BW; Lieberman, S; Preuss, HG (2002). "Effects of a water-soluble extract of maitake mushroom on circulating glucose/insulin concentrations in KK mice". Diabetes, Obesity and Metabolism 4 (1): 43–8. doi:10.1046/j.1463-1326.2002.00180.x. PMID 11874441. 
  81. ^ Horio, H; Ohtsuru, M (2001). "Maitake (Grifola frondosa) improve glucose tolerance of experimental diabetic rats". Journal of nutritional science and vitaminology 47 (1): 57–63. doi:10.3177/jnsv.47.57. PMID 11349892. 
  82. ^ Kiho, T; Tsujimura, Y; Sakushima, M; Usui, S; Ukai, S (1994). "Polysaccharides in fungi. XXXIII. Hypoglycemic activity of an acidic polysaccharide (AC) from Tremella fuciformis". Yakugaku zasshi 114 (5): 308–15. ISSN 1347-5231. PMID 8014840. [unreliable medical source?]
  83. ^ Cho, Eun Jae; Hwang, Hye Jin; Kim, Sang Woo; Oh, Jung Young; Baek, Yu Mi; Choi, Jang Won; Bae, Song Hwan; Yun, Jong Won (2007). "Hypoglycemic effects of exopolysaccharides produced by mycelial cultures of two different mushrooms Tremella fuciformis and Phellinus baumii in ob/ob mice". Applied Microbiology and Biotechnology 75 (6): 1257–65. doi:10.1007/s00253-007-0972-2. PMID 17457544. [unreliable medical source?]
  84. ^ Kim, SW; Hwang, HJ; Baek, YM; Hwang, HS; Yun, JW (2009). "Proteomic analysis in ob/ob mice before and after hypoglycemic polysaccharide treatments". Journal of microbiology and biotechnology 19 (10): 1109–21. PMID 19884767. [unreliable medical source?]
  85. ^ Li, Tzu-Hsuan; Hou, Chia-Chung; Chang, Cicero Lee-Tian; Yang, Wen-Chin (2011). "Anti-hyperglycemic properties of crude extract and triterpenes from Poria cocos". Evidence-Based Complementary and Alternative Medicine 2011: 1. doi:10.1155/2011/128402. [unreliable medical source?]
  86. ^ Zhang, HN; Lin, ZB (2004). "Hypoglycemic effect of Ganoderma lucidum polysaccharides". Acta pharmacologica Sinica 25 (2): 191–5. PMID 14769208. [unreliable medical source?]
  87. ^ Yang, Byung-Keun; Jung, Yu-Sun; Song, Chi-Hyun (2007). "Hypoglycemic effects of Ganoderma applanatum and Collybia confluens exo-polymers in streptozotocin-induced diabetic rats". Phytotherapy Research 21 (11): 1066–9. doi:10.1002/ptr.2214. PMID 17600864. [unreliable medical source?]
  88. ^ Yuan, Zuomin; He, Puming; Cui, Jianhui; Takeuchi, Hisanao (1998). "Hypoglycemic effect of water-soluble polysaccharide from Auricularia auricula-judae quel. on genetically diabetic KK-Ay mice". Bioscience, Biotechnology, and Biochemistry 62 (10): 1898–903. doi:10.1271/bbb.62.1898. PMID 9836425. [unreliable medical source?]
  89. ^ Gray, A.; Flatt, PR (1998). "Insulin-releasing and insulin-like activity of Agaricus campestris (mushroom)". Journal of Endocrinology 157 (2): 259–66. doi:10.1677/joe.0.1570259. PMID 9659289. 
  90. ^ Liu, Ying; Fukuwatari, Yasushi; Okumura, Ko; Takeda, Kazuyoshi; Ishibashi, Ken-Ichi; Furukawa, Mai; Ohno, Naohito; Mori, Kazu et al. (2008). "Immunomodulating activity of Agaricus brasiliensis KA21 in mice and in human volunteers". Evidence-Based Complementary and Alternative Medicine 5 (2): 205–219. doi:10.1093/ecam/nem016. PMC 2396466. PMID 18604247. [unreliable medical source?]
  91. ^ Kim, Yea-Woon; Kim, Ki-Hoon; Choi, Hyun-Ju; Lee, Dong-Seok (2005). "Anti-diabetic activity of β-glucans and their enzymatically hydrolyzed oligosaccharides from Agaricus blazei". Biotechnology Letters 27 (7): 483–7. doi:10.1007/s10529-005-2225-8. PMID 15928854. [unreliable medical source?]
  92. ^ Hsu, Chung-Hua; Liao, Yang-Li; Lin, Su-Ching; Hwang, Kung-Chang; Chou, Pesus (2007). "The mushroom Agaricus blazei Murill in combination with metformin and gliclazide improves insulin resistance in type 2 diabetes: a randomized, double-blinded, and placebo-controlled clinical trial". The Journal of Alternative and Complementary Medicine 13 (1): 97–102. doi:10.1089/acm.2006.6054. PMID 17309383. [unreliable medical source?]
  93. ^ a b c Fortes, RC; Novaes, MRCG; Recova, VL; Melo, AL (2009). "Immunological, hematological, and glycemia effects of dietary supplementation with Agaricus sylvaticus on patients' colorectal cancer". Experimental Biology and Medicine 234 (1): 53–62. doi:10.3181/0806-RM-193. PMID 18997106. [unreliable medical source?]
  94. ^ a b Mizuno T (1999). "Antitumor and hypoglycemic activities of polysaccharides from the sclerotia and mycelia of Inonotus obliquus". International Journal of Medicinal Mushrooms 1 (1): 301–16. ISSN 1521-9437. [unreliable medical source?]
  95. ^ Wang, Jinn Chyi; Hu, Shu Hui; Wang, Jih Terng; Chen, Ker Shaw; Chia, Yi Chen (2005). "Hypoglycemic effect of extract of Hericium erinaceus". Journal of the Science of Food and Agriculture 85 (4): 641–6. doi:10.1002/jsfa.1928. [unreliable medical source?]
  96. ^ Kiho, Tadashi; Sobue, Satoshi; Ukai, Shigoe (1994). "Structural features and hypoglycemic activities of two polysaccharides from a hot-water extract of agrocybe cylindracea". Carbohydrate Research 251: 81–7. doi:10.1016/0008-6215(94)84277-9. PMID 8149381. [unreliable medical source?]
  97. ^ Han, Chunchao; Liu, Tongjun (2008). "A comparison of hypoglycemic activity of three species of Basidiomycetes rich in vanadium". Biological Trace Element Research 127 (2): 177–82. doi:10.1007/s12011-008-8231-7. PMID 18802668. [unreliable medical source?]
  98. ^ Kiho, T; Hui, J; Yamane, A; Ukai, S (1993). "Polysaccharides in fungi. XXXII. Hypoglycemic activity and chemical properties of a polysaccharide from the cultural mycelium of Cordyceps sinensis". Biological & pharmaceutical bulletin 16 (12): 1291–3. doi:10.1248/bpb.16.1291. PMID 8130781. 
  99. ^ Kiho, T; Yamane, A; Hui, J; Usui, S; Ukai, S (1996). "Polysaccharides in fungi. XXXVI. Hypoglycemic activity of a polysaccharide (CS-F30) from the cultural mycelium of Cordyceps sinensis and its effect on glucose metabolism in mouse liver". Biological & pharmaceutical bulletin 19 (2): 294–6. doi:10.1248/bpb.19.294. PMID 8850325. 
  100. ^ Zhao, Chun-Sheng; Yin, Wei-Ti; Wang, Jing-Yan; Zhang, Yan; Yu, Hong; Cooper, Raymond; Smidt, Carsten; Zhu, Jia-Shi (2002). "CordyMax™ Cs-4 improves glucose metabolism and increases insulin sensitivity in normal rats". The Journal of Alternative and Complementary Medicine 8 (3): 309–14. doi:10.1089/10755530260127998. PMID 12165188. 
  101. ^ Lo, H; Tu, ST; Lin, KC; Lin, SC (2004). "The anti-hyperglycemic activity of the fruiting body of Cordyceps in diabetic rats induced by nicotinamide and streptozotocin". Life Sciences 74 (23): 2897–908. doi:10.1016/j.lfs.2003.11.003. PMID 15050427. 
  102. ^ Li, S; Zhang, G; Zeng, Q; Huang, Z; Wang, Y; Dong, T; Tsim, K (2006). "Hypoglycemic activity of polysaccharide, with antioxidation, isolated from cultured Cordyceps mycelia". Phytomedicine 13 (6): 428–33. doi:10.1016/j.phymed.2005.02.002. PMID 16716913. 
  103. ^ Bowerman S (March 31, 2008). "If mushrooms see the light". Los Angeles Times. 
  104. ^ Rangelcastro, J (January 2002). "The ergocalciferol content of dried pigmented and albino Cantharellus cibarius fruit bodies". Mycological Research 106 (1): 70–73. doi:10.1017/S0953756201005299. 
  105. ^ Bowerman, Susan (March 31, 2008). "If mushrooms see the light". Los Angeles Times. Retrieved 2010-03-18. 
  106. ^ Koyyalamudi, Sundar Rao; Jeong, Sang-Chul; Song, Chi-Hyun; Cho, Kai Yip; Pang, Gerald (2009). "Vitamin D2 Formation and Bioavailability from Agaricus bisporus Button Mushrooms Treated with Ultraviolet Irradiation". Journal of Agricultural and Food Chemistry 57 (8): 3351–5. doi:10.1021/jf803908q. PMID 19281276. 
  107. ^ Lee, Geun-Shik; Byun, Hyuk-Soo; Yoon, Kab-Hee; Lee, Jin-Sil; Choi, Kyung-Chul; Jeung, Eui-Bae (2008). "Dietary calcium and vitamin D2 supplementation with enhanced Lentinula edodes improves osteoporosis-like symptoms and induces duodenal and renal active calcium transport gene expression in mice". European Journal of Nutrition 48 (2): 75–83. doi:10.1007/s00394-008-0763-2. PMID 19093162. 
  108. ^ Bao, Huynh N. D.; Ushio, Hideki; Ohshima, Toshiaki (2008). "Antioxidative Activity and Antidiscoloration Efficacy of Ergothioneine in Mushroom (Flammulina velutipes) Extract Added to Beef and Fish Meats". Journal of Agricultural and Food Chemistry 56 (21): 10032–40. doi:10.1021/jf8017063. PMID 18841979. [unreliable medical source?]
  109. ^ Ey, Janine; Schömig, Edgar; Taubert, Dirk (2007). "Dietary Sources and Antioxidant Effects of Ergothioneine". Journal of Agricultural and Food Chemistry 55 (16): 6466–74. doi:10.1021/jf071328f. PMID 17616140. [unreliable medical source?]
  110. ^ Førland, D. T.; Johnson, E.; Saetre, L.; Lyberg, T.; Lygren, I.; Hetland, G. (2011). "Effect of an Extract Based on the Medicinal Mushroom Agaricus blazei Murill on Expression of Cytokines and Calprotectin in Patients with Ulcerative Colitis and Crohn's disease". Scandinavian Journal of Immunology 73 (1): 66–75. doi:10.1111/j.1365-3083.2010.02477.x. PMID 21129005. 
  111. ^ Park, YM; Kim, IT; Park, HJ; Choi, JW; Park, KY; Lee, JD; Nam, BH; Kim, DG et al. (2004). "Anti-inflammatory and anti-nociceptive effects of the methanol extract of Fomes fomentarius". Biological & pharmaceutical bulletin 27 (10): 1588–93. doi:10.1248/bpb.27.1588. PMID 15467201. 
  112. ^ Kim, Ho-Gyoung; Yoon, Deok-Hyo; Kim, Chun-Hoi; Shrestha, Bhushan; Chang, Woo-Chul; Lim, So-Yeon; Lee, Won-Ho; Han, Sang-Guk et al. (2007). "Ethanol Extract ofInonotus obliquusInhibits Lipopolysaccharide-Induced Inflammation in RAW 264.7 Macrophage Cells". Journal of Medicinal Food 10 (1): 80–9. doi:10.1089/jmf.2006.156. PMID 17472471. 
  113. ^ Park, Young-Mi; Won, Jong-Heon; Kim, Yang-Hee; Choi, Jong-Won; Park, Hee-Juhn; Lee, Kyung-Tae (2005). "In vivo and in vitro anti-inflammatory and anti-nociceptive effects of the methanol extract of Inonotus obliquus". Journal of Ethnopharmacology 101 (1–3): 120–8. doi:10.1016/j.jep.2005.04.003. PMID 15905055. 
  114. ^ Kim, S; Song, YS; Kim, SK; Kim, BC; Lim, CJ; Park, EH (2004). "Anti-inflammatory and related pharmacological activities of the n-BuOH subfraction of mushroom Phellinus linteus". Journal of Ethnopharmacology 93 (1): 141–6. doi:10.1016/j.jep.2004.03.048. PMID 15182919. 
  115. ^ Koyama, Kiyotaka; Imaizumi, Tooru; Akiba, Michiko; Kinoshita, Kaoru; Takahashi, Kunio; Suzuki, Akira; Yano, Shingo; Horie, Syunji et al. (2007). "Antinociceptive Components ofGanoderma lucidum". Planta Medica 63 (3): 224–7. doi:10.1055/s-2006-957658. PMID 9225603. 
  116. ^ Guerradore, C; Azevedo, T; Desouza, M; Rego, L; Dedantas, J; Silva, F; Rocha, H; Baseia, I et al. (2007). "Antiinflammatory, antioxidant and cytotoxic actions of β-glucan-rich extract from Geastrum saccatum mushroom". International Immunopharmacology 7 (9): 1160–9. doi:10.1016/j.intimp.2007.04.010. PMID 17630194. 
  117. ^ Zhang, Y; Mills, GL; Nair, MG (2003). "Cyclooxygenase inhibitory and antioxidant compounds from the fruiting body of an edible mushroom,". Phytomedicine 10 (5): 386–90. doi:10.1078/0944-7113-00272. PMID 12834003. 
  118. ^ Zhang, Yanjun; Mills, Gary L.; Nair, Muraleedharan G. (2002). "Cyclooxygenase Inhibitory and Antioxidant Compounds from the Mycelia of the Edible MushroomGrifola frondosa". Journal of Agricultural and Food Chemistry 50 (26): 7581–5. doi:10.1021/jf0257648. PMID 12475274. 
  119. ^ Wangun, Hilaire V. Kemami; Berg, Albrecht; Hertel, Waltraud; Nkengfack, Augustin E.; Hertweck, Christian (2004). "Anti-inflammatory and anti-hyaluronate lyase activities of lanostanoids from Piptoporus betulinus". The Journal of antibiotics 57 (11): 755–8. PMID 15712671. [unreliable medical source?]
  120. ^ Kamo, Tsunashi; Asanoma, Masashi; Shibata, Hisao; Hirota, Mitsuru (2003). "Anti-inflammatory Lanostane-Type Triterpene Acids fromPiptoporusbetulinus". Journal of Natural Products 66 (8): 1104–6. doi:10.1021/np0300479. PMID 12932134. [unreliable medical source?]
  121. ^ Adams, Lynn S.; Chen, Shiuan (2009). "Phytochemicals for breast cancer prevention by targeting aromatase". Frontiers in Bioscience 14 (14): 3846–63. doi:10.2741/3493. PMID 19273315. 
  122. ^ Liu, Jie; Kurashiki, Kenji; Shimizu, Kuniyoshi; Kondo, Ryuichiro (2006). "Structure–activity relationship for inhibition of 5α-reductase by triterpenoids isolated from Ganoderma lucidum". Bioorganic & Medicinal Chemistry 14 (24): 8654–60. doi:10.1016/j.bmc.2006.08.018. PMID 16962782. [unreliable medical source?]
  123. ^ Ren, Z; Guo, Z; Meydani, SN; Wu, Dayong (2008). "White button mushroom enhances maturation of bone marrow-derived dendritic cells and their antigen presenting function in mice". The Journal of nutrition 138 (3): 544–50. PMID 18287364. [unreliable medical source?]
  124. ^ Wu, Dayong; Pae, Munkyong; Ren, Zhihong; Guo, Zhuyan; Smith, Donald; Meydani, Simin Nikbin (2007). "Dietary supplementation with white button mushroom enhances natural killer cell activity in C57BL/6 mice". The Journal of nutrition 137 (6): 1472–7. PMID 17513409. [unreliable medical source?]
  125. ^ Yu, Lugang; Fernig, David G.; Smith, John A.; Milton, Jeremy D.; Rhodes, Jonathan M. (1993). "Reversible inhibition of proliferation of epithelial cell lines by Agaricus bisporus (edible mushroom) lectin". Cancer research 53 (19): 4627–32. PMID 8402638. [unreliable medical source?]
  126. ^ Takaku, Takeshi; Kimura, Yoshiyuki; Okuda, Hiromichi (May 2001). "Isolation of an antitumor compound from Agaricus blazei Murill and its mechanism of action". The Journal of Nutrition 131 (5): 1409–13. PMID 11340091. 
  127. ^ Hyodo, I.; Amano, N; Eguchi, K; Narabayashi, M; Imanishi, J; Hirai, M; Nakano, T; Takashima, S (2004). "Nationwide Survey on Complementary and Alternative Medicine in Cancer Patients in Japan". Journal of Clinical Oncology 23 (12): 2645–54. doi:10.1200/JCO.2005.04.126. PMID 15728227. 
  128. ^ Ahn, W.-S.; Kim, D.-J.; Chae, G.-T.; Lee, J.-M.; Bae, S.-M.; Sin, J.-I.; Kim, Y.-W.; Namkoong, S.-E. et al. (2004). "Natural killer cell activity and quality of life were improved by consumption of a mushroom extract, Agaricus blazei Murill Kyowa, in gynecological cancer patients undergoing chemotherapy". International Journal of Gynecological Cancer 14 (4): 589–94. doi:10.1111/j.1048-891X.2004.14403.x. PMID 15304151. [unreliable medical source?]
  129. ^ "Agaricus". About Herbs, Botanicals & Other Products. Memorial Sloan-Kettering Cancer Center. Retrieved 2010-01-18. 
  130. ^ Hetland, G.; Johnson, E.; Lyberg, T.; Bernardshaw, S.; Tryggestad, A. M. A.; Grinde, B. (2008). "Effects of the Medicinal Mushroom Agaricus blazei Murill on Immunity, Infection and Cancer". Scandinavian Journal of Immunology 68 (4): 363–70. doi:10.1111/j.1365-3083.2008.02156.x. PMID 18782264. 
  131. ^ Yoshida, Isao; Kiho, Tadashi; Usui, Shigeyuki; Sakushima, Miho; Ukai, Shigeo (1996). "Polysaccharides in Fungi. XXXVII. Immunomodulating Activities of Carboxymethylated Derivatives of Linear (1→3)-α-D-Glucans Extracted from the Fruiting Bodies of Agrocybe cylindracea and Amanita muscaria". Biological & pharmaceutical bulletin 19 (1): 114–21. doi:10.1248/bpb.19.114. PMID 8820922. 
  132. ^ Bovi, Michele; Carrizo, Maria E.; Capaldi, Stefano; Perduca, Massimiliano; Chiarelli, Laurent R.; Galliano, Monica; Monaco, Hugo L. (2011). "Structure of a lectin with antitumoral properties in king bolete (Boletus edulis) mushrooms". Glycobiology 21 (8): 1000–9. doi:10.1093/glycob/cwr012. PMID 21303815. 
  133. ^ Dotan, Nesly; Wasser, Solomon P.; Mahajna, Jamal (2010). "The Culinary-Medicinal Mushroom Coprinus comatus as a Natural Antiandrogenic Modulator". Integrative Cancer Therapies 10 (2): 148–59. doi:10.1177/1534735410383169. PMID 21147815. 
  134. ^ Ikekawa, T; Maruyama, H; Miyano, T; Okura, A; Sawasaki, Y; Naito, K; Kawamura, K; Shiratori, K (1985). "Proflamin, a new antitumor agent: preparation, physicochemical properties and antitumor activity". Japanese journal of cancer research 76 (2): 142–8. PMID 3920103. 
  135. ^ Ikekawa, Tetsuro; Uehara, Nobuaki; Maeda, Yuko; Nakanishi, Miyako; Fukuoka, Fumiko (1969). "Antitumor activity of aqueous extracts of edible mushrooms". Cancer research 29 (3): 734–5. PMID 5813100. 
  136. ^ Ulbricht, C; Weissner, W; Basch, E; Giese, N; Hammerness, P; Rusie-Seamon, E; Varghese, M; Woods, J (2009). "Maitake mushroom (Grifola frondosa): systematic review by the natural standard research collaboration". Journal of the Society for Integrative Oncology 7 (2): 66–72. PMID 19476741. 
  137. ^ Matsuura, Hideyuki; Asakawa, Chikako; Kurimoto, Masanori; Mizutani, Junya (2002). "α-Glucosidase Inhibitor from the Seeds of Balsam Pear (Momordica charantia) and the Fruit Bodies of Grifola frondosa". Bioscience, Biotechnology, and Biochemistry 66 (7): 1576–8. doi:10.1271/bbb.66.1576. PMID 12224646. [unreliable medical source?]
  138. ^ Deng, Gary; Lin, Hong; Seidman, Andrew; Fornier, Monica; D’Andrea, Gabriella; Wesa, Kathleen; Yeung, Simon; Cunningham-Rundles, Susanna et al. (2009). "A phase I/II trial of a polysaccharide extract from Grifola frondosa (Maitake mushroom) in breast cancer patients: immunological effects". Journal of Cancer Research and Clinical Oncology 135 (9): 1215–21. doi:10.1007/s00432-009-0562-z. PMID 19253021. [unreliable medical source?]
  139. ^ Konno, Sensuke (2009). "Synergistic potentiation of D-fraction with vitamin C as possible alternative approach for cancer therapy". International journal of general medicine 2: 91–108. PMC 2840554. PMID 20360893. 
  140. ^ "CancerResearchUK". 
  141. ^ Spierings, Egilius L. H.; Fujii, Hajime; Sun, Buxiang; Walshe, Thomas (2007). "A Phase I Study of the Safety of the Nutritional Supplement, Active Hexose Correlated Compound, AHCC, in Healthy Volunteers". Journal of Nutritional Science and Vitaminology 53 (6): 536–9. doi:10.3177/jnsv.53.536. PMID 18202543. 
  142. ^ Ritz, Barry W.; Nogusa, Shoko; Ackerman, Elizabeth A.; Gardner, Elizabeth M. (2006). "Supplementation with active hexose correlated compound increases the innate immune response of young mice to primary influenza infection". The Journal of nutrition 136 (11): 2868–73. PMID 17056815. 
  143. ^ Wang T, Active Hexose Correlated Compound (AHCC) enhances host resistance to West Nile encephalitis, 15th International Symposium of the AHCC Research Association, July 21 – 22, Sapporo, Japan, submitted for publication in the Japanese Journal of Nutrition.[verification needed]
  144. ^ Kawano, Michiyo; Thet, May Maw; Makino, Toru; Kushida, Tatsuya; Sakagami, Hiroshi (2010). "DNA microarray analysis of signaling pathway in macrophages stimulated by lignin-carbohydrate complex from lentinus edodes mycelia (LEM) extract". Anticancer research 30 (7): 2567–76. PMID 20682984. 
  145. ^ Duncan, Christine J. G.; Pugh, Nirmal; Pasco, David S.; Ross, Samir A. (2002). "Isolation of a Galactomannan That Enhances Macrophage Activation from the Edible FungusMorchella esculenta". Journal of Agricultural and Food Chemistry 50 (20): 5683–5. doi:10.1021/jf020267c. PMID 12236698. 
  146. ^ Petrova, RD; Reznick, AZ; Wasser, SP; Denchev, CM; Nevo, E; Mahajna, J (2008). "Fungal metabolites modulating NF-kappaB activity: An approach to cancer therapy and chemoprevention (review)". Oncology reports 19 (2): 299–308. PMID 18202775. 
  147. ^ Kuznecova G, Jegina K, Kuznecovs S, Kuznecovs I (2007). "Phallus impudicus in thromboprophylaxis in breast cancer patients undergoing chemotherapy and hormonal treatment". The Breast 16 (S1): S56. 
  148. ^ Wu, Xiangli; Zheng, Suyue; Cui, Li; Wang, Hexiang; Ng, Tzi Bun (2010). "Isolation and characterization of a novel ribonuclease from the pink oyster mushroom Pleurotus djamor". The Journal of General and Applied Microbiology 56 (3): 231–9. doi:10.2323/jgam.56.231. PMID 20647680. 
  149. ^ Nozaki, Hirofumi; Itonori, Saki; Sugita, Mutsumi; Nakamura, Kimihide; Ohba, Kiyoshi; Suzuki, Akemi; Kushi, Yasunori (2008). "Mushroom acidic glycosphingolipid induction of cytokine secretion from murine T cells and proliferation of NK1.1 α/β TCR-double positive cells in vitro". Biochemical and Biophysical Research Communications 373 (3): 435–9. doi:10.1016/j.bbrc.2008.06.047. PMID 18577373. 
  150. ^ Gunde-Cimerman, N; Cimerman, A (1995). "Pleurotus Fruiting Bodies Contain the Inhibitor of 3-Hydroxy-3-Methylglutaryl-Coenzyme a Reductase—Lovastatin". Experimental Mycology 19 (1): 1–6. doi:10.1006/emyc.1995.1001. PMID 7614366. 
  151. ^ Alarcón, J; Aguila, S (2006). "Lovastatin production by Pleurotus ostreatus: effects of the C:N ratio". Zeitschrift fur Naturforschung. C, Journal of biosciences 61 (1–2): 95–8. PMID 16610224. 
  152. ^ Sliva (1992). "Pleurotus ostreatus inhibits proliferation of human breast and colon cancer cells through p53-dependent as well as p53-independent pathway". International Journal of Oncology: 1307–13. doi:10.3892/ijo_00000122. 
  153. ^ Bobek, P; Galbavy, S (2001). "Effect of pleuran (beta-glucan from Pleurotus ostreatus) on the antioxidant status of the organism and on dimethylhydrazine-induced precancerous lesions in rat colon". British journal of biomedical science 58 (3): 164–8. PMID 11575739. 
  154. ^ Zusman, I; Reifen, R; Livni, O; Smirnoff, P; Gurevich, P; Sandler, B; Nyska, A; Gal, R et al. (1997). "Role of apoptosis, proliferating cell nuclear antigen and p53 protein in chemically induced colon cancer in rats fed corncob fiber treated with the fungus Pleurotus ostreatus". Anticancer research 17 (3C): 2105–13. PMID 9216672. 
  155. ^ Ohno, N; Miura, NN; Nakajima, M; Yadomae, T (2000). "Antitumor 1,3-beta-glucan from cultured fruit body of Sparassis crispa". Biological & pharmaceutical bulletin 23 (7): 866–72. doi:10.1248/bpb.23.866. PMID 10919368. 
  156. ^ Harada, Toshie; Miura, Noriko; Adachi, Yoshiyuki; Nakajima, Mitsuhiro; Yadomae, Toshiro; Ohno, Naohito (2002). "Effect of SCG, 1,3-β-D-Glucan from Sparassis crispa on the Hematopoietic Response in Cyclophosphamide Induced Leukopenic Mice". Biological & Pharmaceutical Bulletin 25 (7): 931–9. doi:10.1248/bpb.25.931. PMID 12132673. 
  157. ^ Nameda, Sachiko; Harada, Toshie; Miura, Noriko N.; Adachi, Yoshiyuki; Yadomae, Toshiro; Nakajima, Mitsuhiro; Ohno, Naohito (2003). "Enhanced Cytokine Synthesis of Leukocytes by a β‐Glucan Preparation, SCG, Extracted from a Medicinal Mushroom,Sparassis crispa". Immunopharmacology and Immunotoxicology 25 (3): 321–35. doi:10.1081/IPH-120024500. PMID 19180796. 
  158. ^ Harada, Toshie; Miura, Noriko N.; Adachi, Yoshiyuki; Nakajima, Mitsuhiro; Yadomae, Toshiro; Ohno, Naohito (2002). "IFN-γInduction by SCG, 1,3-β-D-Glucan fromSparassis crispa, in DBA/2 MiceIn Vitro". Journal of Interferon & Cytokine Research 22 (12): 1227–39. doi:10.1089/10799900260475759. 
  159. ^ Kim, Hyung Sook; Kim, Jee Youn; Ryu, Hwa Sun; Park, Hyuk-Gu; Kim, Yong Ook; Kang, Jong Soon; Kim, Hwan Mook; Hong, Jin Tae et al. (2010). "Induction of dendritic cell maturation by β-glucan isolated from Sparassis crispa". International Immunopharmacology 10 (10): 1284–94. doi:10.1016/j.intimp.2010.07.012. PMID 20699131. 
  160. ^ Vinogradov, Evgeny; Petersen, Bent O; Duus, Jens Ø; Wasser, Solomon (2004). "The structure of the glucuronoxylomannan produced by culinary-medicinal yellow brain mushroom (Tremella mesenterica Ritz.:Fr., Heterobasidiomycetes) grown as one cell biomass in submerged culture". Carbohydrate Research 339 (8): 1483–9. doi:10.1016/j.carres.2004.04.001. PMID 15178391. 
  161. ^ Elisashvili, Vladimir; Wasser, Solomon P.; Tan, Kok-Kheng (2002). "Hypoglycemic, Interferonogenous, and Immunomodulatory Activity of Tremellastin from the Submerged Culture of Tremella mesenterica Retz.: Fr. (Heterobasidiomycetes)". International Journal for Medicinal Mushrooms 4 (3).,7a31e55f2119a143,68c568f834abaf77.html. 
  162. ^ Vinogradov, Evgeny; Petersen, Bent O.; Duus, Jens O.; Wasser, Solomon P. (2004). "The Isolation, Structure, and Applications of the Exocellular Heteropolysaccharide Glucuronoxylomannan Produced by Yellow Brain Mushroom Tremella mesenterica Ritz.:Fr. (Heterobasidiomycetes)". International Journal of Medicinal Mushrooms 6 (4): 335. doi:10.1615/IntJMedMushr.v6.i4.40. 
  163. ^ Ishihara, Yoko; Iijima, Hiroko; Yagi, Yoko; Matsunaga, Kenichi (2003). "Enhanced Recovery of NK Cell Activity in Mice under Restraint Stress by the Administration of a Biological Response Modifier Derived from the Mycelia of the Basidiomycete Tricholoma matsutake". Stress 6 (2): 141–8. doi:10.1080/1025389031000116479. PMID 12775334. 
  164. ^ Ishihara, Yoko; Iijima, Hiroko; Yagi, Yoko; Hoshi, Hirotaka; Matsunaga, Kenichi (2004). "Inhibition of Decrease in Natural Killer Cell Activity in Repeatedly Restraint-Stressed Mice by a Biological Response Modifier Derived from Cultured Mycelia of the Basidiomycete Tricholoma matsutake". Neuroimmunomodulation 11 (1): 41–8. doi:10.1159/000072968. PMID 14557678. 
  165. ^ Ebina, T (2003). "Activation of antitumor immunity by intratumor injection of biological preparations [Activation of antitumor immunity by intratumor injection of biological preparations]" (in Japanese). Gan to kagaku ryoho 30 (11): 1555–8. PMID 14619462. 
  166. ^ Hoshi, Hirotaka; Yagi, Yoko; Iijima, Hiroko; Matsunaga, Kenichi; Ishihara, Yoko; Yasuhara, Tadashi (2005). "Isolation and Characterization of a Novel Immunomodulatory α-Glucan−Protein Complex from the Mycelium ofTricholoma matsutakein Basidiomycetes". Journal of Agricultural and Food Chemistry 53 (23): 8948–56. doi:10.1021/jf0510743. PMID 16277387. 
  167. ^ Hoshi, Hirotaka; Iijima, Hiroko; Ishihara, Yoko; Yasuhara, Tadashi; Matsunaga, Kenichi (2008). "Absorption and Tissue Distribution of an Immunomodulatory α-d-Glucan after Oral Administration of Tricholoma matsutake". Journal of Agricultural and Food Chemistry 56 (17): 7715–20. doi:10.1021/jf801123k. PMID 18680305. 
  168. ^ Byeon, Se Eun; Lee, Jaehwi; Lee, Eunji; Lee, Song Yi; Hong, Eock Kee; Kim, Young Eon; Cho, Jae Youl (2009). "Functional activation of macrophages, monocytes and splenic lymphocytes by polysaccharide fraction from Tricholoma matsutake". Archives of Pharmacal Research 32 (11): 1565–72. doi:10.1007/s12272-009-2108-y. PMID 20091269. 
  169. ^ Ebina, T (2005). "各種担子菌製剤の局所投与による抗腫瘍効果の差異 [Antitumor effects of intratumoral injection of Basidiomycetes preparations]" (in Japanese). Gan to kagaku ryoho 32 (11): 1654–6. PMID 16315899. 
  170. ^ Wu, JY; Chen, CH; Chang, WH; Chung, KT; Liu, YW; Lu, FJ; Chen, CH (2011). "Anti-Cancer Effects of Protein Extracts from Calvatia lilacina, Pleurotus ostreatus and Volvariella volvacea". Evidence-based complementary and alternative medicine : eCAM 2011: 982368. doi:10.1093/ecam/neq057. PMC 3139501. PMID 21792367. 
  171. ^ Das, D; Mondal, S; Roy, SK; Maiti, D; Bhunia, B; Maiti, TK; Sikdar, SR; Islam, SS (2010). "A (1-->6)-beta-glucan from a somatic hybrid of Pleurotus florida and Volvariella volvacea: Isolation, characterization, and study of immunoenhancing properties". Carbohydrate research 345 (7): 974–8. doi:10.1016/j.carres.2010.02.028. PMID 20347070. 
  172. ^ Ao, Zong-Hua; Xu, Zheng-Hong; Lu, Zhen-Ming; Xu, Hong-Yu; Zhang, Xiao-Mei; Dou, Wen-Fang (2009). "Niuchangchih (Antrodia camphorata) and its potential in treating liver diseases". Journal of Ethnopharmacology 121 (2): 194–212. doi:10.1016/j.jep.2008.10.039. PMID 19061947. 
  173. ^ Mallick, Sanjaya K.; Maiti, Swatilekha; Bhutia, Sujit K.; Maiti, Tapas K. (2010). "Immunostimulatory Properties of a Polysaccharide Isolated fromAstraeus hygrometricus". Journal of Medicinal Food 13 (3): 665–72. doi:10.1089/jmf.2009.1300. PMID 20521989. 
  174. ^ Mallick, S.K.; Maiti, S.; Bhutia, S.K.; Maiti, T.K. (2010). "Antitumor properties of a heteroglucan isolated from Astraeus hygrometricus on Dalton's lymphoma bearing mouse". Food and Chemical Toxicology 48 (8–9): 2115–21. doi:10.1016/j.fct.2010.05.013. PMID 20472019. 
  175. ^ Khan, Md.Asaduzzaman; Tania, Mousumi; Zhang, Dian-Zheng; Chen, Han-Chun (2010). "Cordyceps Mushroom: A Potent Anticancer Nutraceutical". The Open Nutraceuticals Journal 3: 179–83. doi:10.2174/1876396001003010179. 
  176. ^ "Cordyceps". About Herbs, Botanicals & Other Products. Memorial Sloan-Kettering Cancer Center. 
  177. ^ Chen, Steve; Li, Zhaoping; Krochmal, Robert; Abrazado, Marlon; Kim, Woosong; Cooper, Christopher B. (2010). "Effect of Cs-4® (Cordyceps sinensis) on Exercise Performance in Healthy Older Subjects: A Double-Blind, Placebo-Controlled Trial". The Journal of Alternative and Complementary Medicine 16 (5): 585–90. doi:10.1089/acm.2009.0226. PMC 3110835. PMID 20804368. 
  178. ^ Gao, HL; Lei, LS; Yu, CL; Zhu, ZG; Chen, NN; Wu, SG (2009). "Immunomodulatory effects of Fomes fomentarius polysaccharides: An experimental study in mice". Nan fang yi ke da xue xue bao = Journal of Southern Medical University 29 (3): 458–61. PMID 19304524. 
  179. ^ Chen, Wei; Zhao, Zhao; Chen, Shi-Fei; Li, Yong-Quan (2008). "Optimization for the production of exopolysaccharide from Fomes fomentarius in submerged culture and its antitumor effect in vitro". Bioresource Technology 99 (8): 3187–94. doi:10.1016/j.biortech.2007.05.049. PMID 17624770. 
  180. ^ Yuen, John; Gohel, Mayur Danny (2005). "Anticancer Effects of Ganoderma lucidum: A Review of Scientific Evidence". Nutrition and Cancer 53 (1): 11–7. doi:10.1207/s15327914nc5301_2. PMID 16351502. 
  181. ^ Sliva, Daniel (2003). "Ganoderma Lucidum (Reishi) in Cancer Treatment". Integrative Cancer Therapies 2 (4): 358–64. doi:10.1177/1534735403259066. PMID 14713328. 
  182. ^ Lin, Zhi-bin; Zhang, Hui-na (2004). "Anti-tumor and immunoregulatory activities of Ganoderma lucidum and its possible mechanisms". Acta Pharmacologica Sinica 25 (11): 1387–95. PMID 15525457. 
  183. ^ Kuo, Mei-Chun; Weng, Ching-Yi; Ha, Choi-Lan; Wu, Ming-Jiuan (2006). "Ganoderma lucidum mycelia enhance innate immunity by activating NF-κB". Journal of Ethnopharmacology 103 (2): 217–22. doi:10.1016/j.jep.2005.08.010. PMID 16169168. 
  184. ^ Wang, Xin; Zhao, Xuan; Li, Dan; Lou, Ya-Qing; Lin, Zhi-Bin; Zhang, Guo-Liang (2007). "Effects of Ganoderma lucidum Polysaccharide on CYP2E1, CYP1A2 and CYP3A Activities in BCG-Immune Hepatic Injury in Rats". Biological & Pharmaceutical Bulletin 30 (9): 1702–6. doi:10.1248/bpb.30.1702. PMID 17827724. 
  185. ^ Shi, Yanling; Sun, Jie; He, Hui; Guo, Hui; Zhang, Sheng (2008). "Hepatoprotective effects of Ganoderma lucidum peptides against d-galactosamine-induced liver injury in mice". Journal of Ethnopharmacology 117 (3): 415–9. doi:10.1016/j.jep.2008.02.023. PMID 18406549. 
  186. ^ Morigiwa, A; Kitabatake, K; Fujimoto, Y; Ikekawa, N (1986). "Angiotensin converting enzyme-inhibitory triterpenes from Ganoderma lucidum". Chemical & pharmaceutical bulletin 34 (7): 3025–8. PMID 3021351. 
  187. ^ Su, Chen-Yi; Shiao, Ming-Shi; Wang, Cheng-Teh (1999). "Predominant inhibition of ganodermic acid S on the thromboxane A2-dependent pathway in human platelets response to collagen". Biochimica et Biophysica Acta 1437 (2): 223–34. doi:10.1016/S1388-1981(98)00012-2. PMID 10064905. 
  188. ^ Park, EJ; Ko, G; Kim, J; Sohn, DH (1997). "Antifibrotic effects of a polysaccharide extracted from Ganoderma lucidum, glycyrrhizin, and pentoxifylline in rats with cirrhosis induced by biliary obstruction". Biological & pharmaceutical bulletin 20 (4): 417–20. doi:10.1248/bpb.20.417. PMID 9145221. 
  189. ^ "Reishi Mushroom". About Herbs, Botanicals & Other Products. Memorial Sloan-Kettering Cancer Center. 
  190. ^ Khanna, Jatinder M.; Malone, Marvin H.; Euler, Kenneth L.; Brady, Lynn R. (1965). "Atromentin. Anticoagulant fromHydnellum diabolus". Journal of Pharmaceutical Sciences 54 (7): 1016–20. doi:10.1002/jps.2600540714. PMID 5862512. 
  191. ^ Zheng, Chang-Ji; Sohn, Mi-Jin; Kim, Won-Gon (2006). "Atromentin and Leucomelone, the First Inhibitors Specific to Enoyl-ACP Reductase (FabK) of Streptococcus pneumoniae". The Journal of Antibiotics 59 (12): 808–12. doi:10.1038/ja.2006.108. PMID 17323650. 
  192. ^ Kukulianskaia, TA; Kurchenko, NV; Kurchenko, VP; Babitskaia, VG (2002). "Physicochemical properties of melanins produced by Inonotus obliquus("chagi") in the nature and the cultivated fungus [Physicochemical properties of melanins produced by Inonotus obliquus("chagi") in the nature and the cultivated fungus]" (in Russian). Prikladnaia biokhimiia i mikrobiologiia 38 (1): 68–72. PMID 11852571. 
  193. ^ Kim, Yong Ook; Park, Hae Woong; Kim, Jong Hoon; Lee, Jae Young; Moon, Seong Hoon; Shin, Chul Soo (2006). "Anti-cancer effect and structural characterization of endo-polysaccharide from cultivated mycelia of Inonotus obliquus". Life Sciences 79 (1): 72–80. doi:10.1016/j.lfs.2005.12.047. PMID 16458328. 
  194. ^ Shashkina, M. Ya.; Shashkin, P. N.; Sergeev, A. V. (2006). "Chemical and medicobiological properties of chaga (review)". Pharmaceutical Chemistry Journal 40 (10): 560–8. doi:10.1007/s11094-006-0194-4. 
  195. ^ Taji, Sayaka; Yamada, Takeshi; Wada, Shun-Ichi; Tokuda, Harukuni; Sakuma, Kazuo; Tanaka, Reiko (2008). "Lanostane-type triterpenoids from the sclerotia of Inonotus obliquus possessing anti-tumor promoting activity". European Journal of Medicinal Chemistry 43 (11): 2373–9. doi:10.1016/j.ejmech.2008.01.037. PMID 18387711. 
  196. ^ Nakata, Tomoko; Yamada, Takeshi; Taji, Sayaka; Ohishi, Hirofumi; Wada, Shun-Ichi; Tokuda, Harukuni; Sakuma, Kazuo; Tanaka, Reiko (2007). "Structure determination of inonotsuoxides A and B and in vivo anti-tumor promoting activity of inotodiol from the sclerotia of Inonotus obliquus". Bioorganic & Medicinal Chemistry 15: 257–64. doi:10.1016/j.bmc.2006.09.064. 
  197. ^ Kim, Y; Han, S; Lee, H; Ahn, H; Yoon, Y; Jung, J; Kim, H; Shin, C (2005). "Immuno-stimulating effect of the endo-polysaccharide produced by submerged culture of". Life Sciences 77 (19): 2438–56. doi:10.1016/j.lfs.2005.02.023. PMID 15970296. 
  198. ^ Rzymowska, J (1998). "The effect of aqueous extracts from Inonotus obliquus on the mitotic index and enzyme activities". Bollettino chimico farmaceutico 137 (1): 13–5. PMID 9595828. 
  199. ^ Mimura, H; Ohno, N; Suzuki, I; Yadomae, T (1985). "Purification, antitumor activity, and structural characterization of beta-1,3-glucan from Peziza vesiculosa". Chemical & pharmaceutical bulletin 33 (11): 5096–9. PMID 3830434. 
  200. ^ Suzuki, I; Yonekubo, H; Ohno, N; Miyazaki, T; Yadomae, T (1985). "Effect of a B cell mitogen extracted from a fungus Peziza vesiculosa on antibody production in mice". Journal of pharmacobio-dynamics 8 (7): 494–502. PMID 3906079. 
  201. ^ Ohno, N; Mimura, H; Suzuki, I; Yadomae, T (1985). "Antitumor activity and structural characterization of polysaccharide fractions extracted with cold alkali from a fungus, Peziza vesiculosa". Chemical & pharmaceutical bulletin 33 (6): 2564–8. PMID 4064214. 
  202. ^ Suzuki, I; Yadomae, T; Yonekubo, H; Nishijima, M; Miyazaki, T (1982). "Antitumor activity of an immunomodulating material extracted from a fungus, Peziza vesiculosa". Chemical & pharmaceutical bulletin 30 (3): 1066–8. PMID 7094166. 
  203. ^ Yadomae, T; Suzuki, I; Kumazawa, Y; Miyazaki, T (1979). "A B lymphocyte mitogen extracted from a fungus Peziza vesiculosa". Microbiology and immunology 23 (10): 997–1008. PMID 316098. 
  204. ^ Zhu, Tongbo; Kim, Sung-Hoon; Chen, Chang-Yan (2008). "A Medicinal Mushroom: Phellinus Linteus". Current Medicinal Chemistry 15 (13): 1330–5. doi:10.2174/092986708784534929. PMID 18537612. 
  205. ^ Lee, YS; Kang, YH; Jung, JY; Lee, S; Ohuchi, K; Shin, KH; Kang, IJ; Park, JH et al. (2008). "Protein glycation inhibitors from the fruiting body of Phellinus linteus". Biological & pharmaceutical bulletin 31 (10): 1968–72. doi:10.1248/bpb.31.1968. PMID 18827365. 
  206. ^ Kawagishi, Hirokazu; Hamajima, Keiko; Inoue, Yoshimasa (2002). "Novel Hydroquinone as a Matrix Metallo-proteinase Inhibitor from the Mushroom, Piptoporus betulinus". Bioscience, Biotechnology, and Biochemistry 66 (12): 2748–50. doi:10.1271/bbb.66.2748. PMID 12596882. [unreliable medical source?]
  207. ^ Peintner, U; Poder, R; Pumpel, T (1998). "The iceman's fungi". Mycological Research 102 (10): 1153–62. doi:10.1017/S0953756298006546. 
  208. ^ Li, Xinqun; Xu, Wen; Chen, Jun (2010). "Polysaccharide purified from Polyporus umbellatus (Per) Fr induces the activation and maturation of murine bone-derived dendritic cells via toll-like receptor 4". Cellular Immunology 265 (1): 50–6. doi:10.1016/j.cellimm.2010.07.002. PMID 20673883. 
  209. ^ Zhao, Ying-Yong; Chao, Xu; Zhang, Yongmin; Lin, Rui-Chao; Sun, Wen-Ji (2010). "Cytotoxic Steroids from Polyporus umbellatus". Planta Medica 76 (15): 1755–8. doi:10.1055/s-0030-1249926. PMID 20458671. 
  210. ^ Sun, Yi; Yasukawa, Ken (2008). "New anti-inflammatory ergostane-type ecdysteroids from the sclerotium of Polyporus umbellatus". Bioorganic & Medicinal Chemistry Letters 18 (11): 3417–20. doi:10.1016/j.bmcl.2008.04.008. PMID 18439824. 
  211. ^ Zhou, Wei-Wei; Lin, Wen-Han; Guo, Shun-Xing (2007). "Two New Polyporusterones Isolated from the Sclerotia of Polyporus umbellatus". Chemical & Pharmaceutical Bulletin 55 (8): 1148–50. doi:10.1248/cpb.55.1148. PMID 17666835. 
  212. ^ You, Jyh-sheng; Hau, Dou-mong; Chen, Kung-tung; Huang, Hui-feng (1994). "Combined Effects of Chuling (Polyporus umbellatus) Extract and Mitomycin C on Experimental Liver Cancer". The American Journal of Chinese Medicine 22 (1): 19–28. doi:10.1142/S0192415X94000048. PMID 8030616. 
  213. ^ Ohsawa, T; Yukawa, M; Takao, C; Murayama, M; Bando, H (1992). "Studies on constituents of fruit body of Polyporus umbellatus and their cytotoxic activity". Chemical & pharmaceutical bulletin 40 (1): 143–7. PMID 1576664. 
  214. ^ Zhang, YH; Liu, YL; Yan, SC (1991). "Effect of Polyporus umbellatus polysaccharide on function of macrophages in the peritoneal cavities of mice with liver lesions". Zhong xi yi jie he za zhi 11 (4): 225–6, 198. PMID 1773459. 
  215. ^ Lin, YF; Wu, GL (1988). "Protective effect of Polyporus umbellatus polysaccharide on toxic hepatitis in mice". Zhongguo yao li xue bao 9 (4): 345–8. PMID 3195347. 
  216. ^ Esteban, Carlos Illana (2009). "Interés medicinal de Poria cocos (= Wolfiporia extensa) [Medicinal interest of Poria cocos (= Wolfiporia extensa)]" (in Spanish). Revista Iberoamericana de Micología 26 (2): 103–7. doi:10.1016/S1130-1406(09)70019-1. PMID 19631158. 
  217. ^ Cite error: Invalid <ref> tag; no text was provided for refs named Sullivan2001; see Help:Cite errors/Cite error references no text
  218. ^ Khamaisie, H; Sussan, S; Tal, M; Najajreh, Y; Ruthardt, M; Mahajna, J (2011). "Oleic acid is the active component in the mushroom Daedalea gibbosa inhibiting Bcr-Abl kinase autophosphorylation activity". Anticancer research 31 (1): 177–83. PMID 21273596. 
  219. ^
  220. ^ Stamets. Mycelium Running: How Mushrooms Can Help Save the World. [page needed]

External links

Wikimedia Foundation. 2010.

Игры ⚽ Поможем сделать НИР

Look at other dictionaries:

  • Medicinal molds — Aspergillus mold colonies Medicinal molds are molds which were the original source of certain medicines. The most important contribution to medicine by medicinal molds include the first statins and the discovery of penicillin. Contents …   Wikipedia

  • Dr Myko San - Health from Mushrooms — Dr Myko San – Health from Mushrooms (Croatian: Dr Myko San – Zdravlje iz gljiva) is a Croatian private company, based in Zagreb, producing and selling medicinal mushroom preparations. Dr Ivan Jakopović (IPA2|jʌˈkoːpoʋiʨ) and Marija Jakopović… …   Wikipedia

  • Psilocybin mushrooms — (also called psilocybian mushrooms or teónanácatl) are fungi mainly of the psilocybe genus that contain the psychedelic substances psilocybin and psilocin, and occasionally other psychoactive tryptamines. There are multiple colloquial terms for… …   Wikipedia

  • Seta medicinal — Setas medicinales son setas o extractos de setas que se utilizan o estudiados como posibles tratamientos para las enfermedades. Algunos materiales de setas, incluyendo polisacáridos, glicoproteínas y proteoglicanos, modulan las respuestas del… …   Wikipedia Español

  • Mycology — Mushrooms are a kind of fungal reproductive structure Mycology (from the Greek μύκης, mukēs, meaning fungus ) is the branch of biology concerned with the study of fungi, including their genetic and biochemical properties, their taxonomy and their …   Wikipedia

  • Mushroom dye — Mushrooms can be used to create color dyes.[1] Mushroom Color inducer Color created Chanterelle ammonia dull yellow Artist s conk ammonia rust Horse mushroom salt water yellowish green Meadow mushroom salt water …   Wikipedia

  • Edible mushroom — White mushrooms ready for cooking. While common, they are just one of the many types of mushrooms cultivated and eaten …   Wikipedia

  • Fungus — Fungi redirects here. You may be looking for Fungi (music) or Fungus (XM). Fungi Temporal range: Early Devonian–Recent (but see text) …   Wikipedia

  • Mushroom — The mushroom Amanita muscaria, commonly known as fly agaric A mushroom is the fleshy, spore bearing fruiting body of a fungus, typically produced above ground on soil or on its food source. The standard for the name mushroom is the cultivated… …   Wikipedia

  • Lingzhi mushroom — Ganoderma lucidum Scientific classification Kingdom: Fungi Phylum …   Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”