Glycosidic bond

Glycosidic bond

In chemistry, a glycosidic bond is a type of covalent bond that joins a carbohydrate (sugar) molecule to another group, which may or may not be another carbohydrate.

A glycosidic bond is formed between the hemiacetal group of a saccharide (or a molecule derived from a saccharide) and the hydroxyl group of some organic compound such as an alcohol. If the group attached to the carbohydrate residue is not another saccharide it is referred to as an aglycone. If it is another saccharide, the resulting units can be termed as being at the reducing end or the terminal end of the structure. This is a relative nomenclature where the reducing end of the di- or polysaccharide is towards the last anomeric carbon of the structure, and the terminal end is in the opposite direction.

In the literature, the bond between an amino group or other nitrogen-containing group and the sugar is often referred to as a glycosidic bond (although IUPAC seems to suggest that the term is a misnomer). For example, the sugar-base bond in a nucleoside may be referred to as a glycosidic bond.[1] A substance containing a glycosidic bond is a glycoside.

Formation of ethyl glucoside : Glucose and ethanol combine to form ethyl glucoside and water. The reaction often favors formation of the α glycosidic bond as shown due to the anomeric effect.


S-, N-, C-, and O-glycosidic bonds

Adenosine, a component of RNA, results from the sugar ribose and adenine via the formation of an N-glycosidic bond (shown as the vertical line between the N and the sugar cycle)

Glycosidic bonds of the form discussed above known as O-glycosidic bonds, in reference to the glycosidic oxygen that links the glycoside to the aglycone or reducing end sugar. In analogy, one also considers S-glycosidic bonds (which form thioglycosides), where the oxygen of the glycosidic bond is replaced with a sulfur atom. In the same way, N-glycosidic bonds, have the glycosidic bond oxygen replaced with nitrogen. Substances containing N-glycosidic bonds are also known as glycosylamines; the term "N-glycoside" is considered a misnomer by IUPAC and is discouraged.[2] C-glycosyl bonds have the glycosidic oxygen replaced by a carbon. All of these modified glycosidic bonds have different susceptibility to hydrolysis, and in the case of C-glycosyl structures, they are typically more resistant to hydrolysis.

Numbering, and α/β distinction of glycosidic bonds

A β-1,6 glucan molecule showing how carbons are numbered. The terminal saccharide is linked via a β-1,6 glycosidic bond. The remaining linkages are all β-1,3.

One distinguishes between α- and β-glycosidic bonds based on the relative stereochemistry of the anomeric position and the stereocentre furthest from C1 in the saccharide.[3] In D-hexose sugars in their pyranose forms, an α-glycosidic bond is formed in an axial orientation, whereas a β-glycosidic bond will be oriented equatorially.[4]

Pharmacologists often join substances to glucuronic acid via glycosidic bonds in order to increase their water solubility; this is known as glucuronidation. Many other glycosides have important physiological functions.

Glycoside hydrolases

Glycoside hydrolases (or glycosidases), are enzymes that break glycosidic bonds. Glycoside hydrolases typically can act either on α- or on β-glycosidic bonds, but not on both.

Before monosaccharide units are incorporated into glycoproteins, polysaccharides, or lipids in living organisms, they are typically first "activated" by being joined via a glycosidic bond to the phosphate group of a nucleotide such as uridine diphosphate (UDP), guanosine diphosphate (GDP), thymidine diphosphate (TDP), or cytidine monophosphate (CMP). These activated biochemical intermediates are known as sugar nucleotides or sugar donors. Many biosynthetic pathways use mono- or oligosaccharides activated by a diphosphate linkage to lipids, such as dolichol. These activated donors are then substrates for enzymes known as glycosyltransferases, which transfer the sugar unit from the activated donor to an accepting nucleophile (the acceptor substrate).

External links

See Also

Mannan Oligosaccharides (MOS)


Wikimedia Foundation. 2010.

Игры ⚽ Поможем сделать НИР

Look at other dictionaries:

  • glycosidic bond — Bond between anomeric carbon of a sugar and the group to which it is attached (which may be in another sugar or in protein or lipid) …   Dictionary of molecular biology

  • glycosidic bond — noun Any bond by reaction of the hemiacetal part of a saccharide and the hydroxyl group of another saccharide or an alcohol …   Wiktionary

  • Glycosidic bond — …   Википедия

  • Glycoside — Genin redirects here. For the ninja rank, see Ninja#Development. Salicin, a glycoside related to aspirin …   Wikipedia

  • Beta-glucan — Diagram showing orientation and location of different beta glucan linkages …   Wikipedia

  • Galactoside — A galactoside is a glycoside containing galactose. The H of the OH group on carbon 1 of galactose is replaced by an organic moiety. Depending on whether the glycosidic bond lies above or below the plane of the galactose molecule, galactosides are …   Wikipedia

  • Chromomycin A3 — IUPAC name (1S) ​1 ​C ​((2S,​3S) ​7 ​{[4 ​O ​acetyl ​2,​6 ​dideoxy ​3 ​O ​(2,​6 ​dideox …   Wikipedia

  • Cyclic ADP-ribose — Identifiers CAS number 119340 53 3 …   Wikipedia

  • Lysozyme — single crystal Identifiers EC number …   Wikipedia

  • Sucrose phosphorylase — (E.C. is an important enzyme in the metabolism of sucrose and regulation of other metabolic intermediates. Sucrose phosphorylase is in the class of hexosyltransferases, a type of glycosyltransferase that catalyzes the transfer of a… …   Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”