- Stroke (engine)
-
Reciprocating motion, used in reciprocating engines and other mechanisms, is back-and-forth motion. Each cycle of reciprocation consists of two opposite motions: there is a motion in one direction, and then a motion back in the opposite direction. Each of these is called a stroke. The term is also used to mean the length of the stroke.
In a steam locomotive, steam, Otto or Diesel piston engine, a stroke is the action of a piston travelling the full length of its locomotive cylinder or engine cylinder in one direction.
The stroke length is determined by the cranks on the crankshaft. Stroke can also refer to the distance the piston travels. Bore is the diameter of the cylinder, which means that engine displacement is dependent on both the bore and the stroke of the cylinder.
In a pistonless rotary engine, the term is applied to the corresponding rotor movement, see dead centre.
Contents
Four-stroke internal combustion engine
Most modern internal combustion engines work on a four-stroke cycle; that is, a complete cylinder cycle consists of four discrete strokes, as described below. Other types of engines can have very different stroke cycles.
Induction stroke
The induction stroke is the first stroke in a four-stroke internal combustion engine cycle. It involves the downward movement of the piston, creating a partial vacuum that draws (allows atmospheric pressure to push) a fuel/air mixture into the combustion chamber.
In a reciprocating engine, that portion of the cycle when the pistons move from TDC (top dead center) to BDC (bottom dead center) and the fuel-air mixture is drawn into the cylinders.
Compression stroke
The compression stroke is the second of four stages in an otto cycle or diesel cycle internal combustion engine.
In this stage, the mixture (in the case of an Otto engine) or air (in the case of a Diesel engine) is compressed to the top of the cylinder by the piston until it is either ignited by a spark plug in an Otto engine or, in the case of a Diesel engine, reaches the point at which the fuel which has been injected spontaneously combusts, forcing the piston back down.
Compression serves to increase the proportion of energy which can be extracted from the hot gas and should be optimised for a given application. Too high a compression can cause detonation which is undesirable compared with a smooth, controlled burn. Too low a compression may result in the fuel/air mixture still burning when the piston reaches the bottom of the stroke and the exhaust valve opens.
Solve for variable
Power stroke
A power stroke is, in general, the stroke of a cyclic motor which generates force. It is used in describing mechanical engines. This force is the result of the spark plug igniting the compressed fuel-air mixture.
Exhaust stroke
The exhaust stroke is the fourth of four stages in a four stroke internal combustion engine cycle. In this stage gases remaining in the cylinder from the fuel ignited during the compression step are removed from the cylinder through an exhaust valve at the top of the cylinder. The gases are forced up to the top of the cylinder as the piston rises and are pushed through the opening which then closes to allow fresh air/fuel mixture into the cylinder so the process can repeat itself.
See also
- Bore (engine)
- Compression ratio
- Cylinder head porting
- Reciprocating engine
- Two-stroke cycle
Reciprocating engines and configurations Type Stroke cycles Engine
configurationsI2 · I3 · I4 · I5 · I6 · I7 · I8 · I9 · I10 · I12 · I14F2 · F4 · F6 · F8 · F12 · F16Other inlineComponents Cylinder head porting · Corliss · Intake · Exhaust · Multi · Overhead · Piston · Piston (steam engine) · Poppet · Side · Sleeve · Slide · Rotary valve · Variable valve timing · Camless · DesmodromicCam · Camshaft · Overhead camshaft · Connecting rod · Crank · Crank substitute · Crankshaft · Scotch Yoke · Swashplate · Rhombic driveOtherCategories:- Piston engine configurations
- Engine technology
Wikimedia Foundation. 2010.