- Optogenetics
-
Neuropsychology PeopleArthur L. Benton
David Bohm
António Damásio
H. M.
Phineas Gage
Norman Geschwind
Elkhonon Goldberg
Patricia Goldman Rakic
Pasko Rakic
Donald O. Hebb
Kenneth Heilman
Edith Kaplan
Muriel Lezak
Benjamin Libet
Rodolfo Llinás
Alexander Luria
Brenda Milner
Karl H. Pribram
Oliver Sacks
Mark Rosenzweig
Roger W. Sperry
K. C.Mind and Brain Portal Optogenetics is the combination of genetic and optical methods to control specific events in targeted cells of living tissue, even within freely moving mammals and other animals, with the temporal precision (millisecond-timescale) needed to keep pace with functioning intact biological systems.
In 2010, optogenetics was chosen as the Method of the Year (MOTY) across all fields of science and engineering by the interdisciplinary research journal Nature Methods (MOTY primer, MOTY editorial, MOTY commentary). At the same time, optogenetics was highlighted in the article on “Breakthroughs of the Decade” in the scientific research journal Science BotD; these journals also referenced recent public-access general-interest video MOTY video and textual SciAm summaries of optogenetics.
Contents
History
The theoretical utility of selectively controlling precise neural activity (action potential) patterns within subtypes of cells in the brain (for example, using light to control optically-sensitized neurons) had been articulated by Francis Crick in his Kuffler Lectures at the University of California in San Diego (Crick 1999). An early use of light to activate neurons was carried out by Richard Fork and later Rafael Yuste, who demonstrated laser activation of neurons within intact tissue, although not in a genetically-targeted manner. The earliest genetically targeted photostimulation method was demonstrated by Gero Miesenbock, who employed Drosophila multiple-protein cascades initiated by G protein-coupled rhodopsin photoreceptors for controlling neural activity in cultured neurons. Miesenbock later employed a combination chemical-and-G-protein coupled receptor method to modulate the behavior of fruit flies with light, and the Kramer and Isacoff groups likewise employed synthesized organic photoswitches or “caged” compounds that could interact with genetically-introduced ion channels (Zemelman 2002, Zemelman 2003, Banghart 2004, Lima 2005).
In 2005, the first of many studies using mammals, instead of invertebrates, was initiated by Karl Deisseroth's group at Stanford University (2005)). They brought the first single-component optogenetic system to neurobiology (beginning with channelrhodopsin, a single-component light-activated cation channel from unicellular algae), which allowed millisecond-scale temporal control in mammals, required only one gene to be expressed in order to work, and responded to visible-spectrum light with a chromophore retinal that was already present and supplied to the channelrhodopsin (ChR) by the vertebrate tissues. The surprising experimental utility of this single-component “microbial opsin” approach was quickly proven with many additional microbial opsin classes and in a variety of animal models ranging from behaving mammals to classical model organisms such as flies, worms, and zebrafish. The “optogenetic” terminology was coined in 2006 (Deisseroth 2006), and since 2005 hundreds of laboratories around the world have employed microbial opsins to study complex biological systems (references below).
In 2010 Finnish company Valkee bring into market Bright light headset for severe seasonal symptoms experienced during long winter due the lack of light.Bright light has shown efficacy in various mood swings from PMS to job stress, and is a widely-accepted de-facto treatment for winter blues.[1] In clinical trials, 9 of 10 people with severe seasonal symptoms experienced total relief within 4 weeks. [2]
Description
Millisecond-scale temporal precision is central to optogenetics, which allows the experimenter to keep pace with fast biological information processing (for example, in probing the causal role of specific action potential patterns in defined neurons). Indeed, to probe the neural code, optogenetics by definition must operate on the millisecond timescale to allow addition or deletion of precise activity patterns within specific cells in the brains of intact animals, including mammals. By comparison, the temporal precision of traditional genetic manipulations (employed to probe the causal role of specific genes within cells, via “loss-of-function” or “gain of function” changes in these genes) is rather slow, from hours or days to months. It is important to also have fast readouts in optogenetics that can keep pace with the optical control. This can be done with electrical recordings ("optrodes") or with reporter proteins that are biosensors, where scientists have fused fluorescent proteins to detector proteins. An example of this is voltage-sensitive fluorescent protein (VSFP2).
The hallmark of optogenetics therefore is introduction of fast light-activated channels and enzymes that allow temporally precise manipulation of electrical and biochemical events while maintaining cell-type resolution through the use of specific targeting mechanisms. Among the microbial opsins which can be used to investigate the function of neural systems are the channelrhodopsins (ChR2, ChR1, VChR1, and SFOs) to excite neurons (gain of function). For loss of function, halorhodopsin (NpHR), enhanced halorhodopsins (eNpHR2.0 and eNpHR3.0), archaerhodopsin (Arch), Leptosphaeria maculans fungal opsins (Mac), and enhanced bacteriorhodopsin (eBR) have been employed to inhibit neurons, including in freely-moving mammals (Witten 2010).
Moreover, optogenetic control of well-defined biochemical events within behaving mammals is now also possible. Building on prior work fusing vertebrate opsins to specific G-protein coupled receptors (Kim 2005), a family of chimeric single-component optogenetic tools was created that allowed researchers to manipulate within behaving mammals the concentration of defined intracellular messengers such as cAMP and IP3 in targeted cells (Airan 2009). Other biochemical approaches to optogenetics (crucially, with tools that displayed low activity in the dark) followed soon thereafter, when optical control over small GTPases and adenylyl cyclases was achieved in cultured cells using novel strategies from several different laboratories (Levskaya 2009, Wu 2009, Yazawa 2009, Stierl 2011, Ryu 2010). This emerging repertoire of optogenetic probes now allows cell-type-specific and temporally precise control of multiple axes of cellular function within intact animals.
Optogenetics also necessarily includes 1) the development of genetic targeting strategies such as cell-specific promoters or other customized conditionally-active viruses, to deliver the light-sensitive probes to specific populations of neurons in the brain of living animals (e.g. worms, fruit flies, mice, rats, and monkeys), and 2) hardware (e.g. integrated fiberoptic and solid-state light sources) to allow specific cell types, even deep within the brain, to be controlled in freely behaving animals. Most commonly, the latter is now achieved using the fiberoptic-coupled diode technology introduced in 2007 (Aravanis et al., 2007, Adamantidis et al., 2007, Gradinaru et al., 2007). To stimulate superficial brain areas such as the cerebral cortex, optical fibers or LEDs can be directly mounted to the skull of the animal. More deeply implanted optical fibers have been used to deliver light to deeper brain areas. In invertebrates such as worms and fruit flies some amount of Retinal isomerase all-trans-retinal (ATR) is supplemented with food. A key advantage of microbial opsins as noted above is that they are fully functional without the addition of exogenous co-factors in vertebrates.
The field of optogenetics has furthered the fundamental scientific understanding of how specific cell types contribute to the function of biological tissues such as neural circuits in vivo (see references from the scientific literature below). Moreover, on the clinical side, optogenetics-driven research has led to insights into Parkinson's disease and other neurological and psychiatric disorders. Indeed, optogenetics papers in 2009 have also provided insight into neural codes relevant to autism, Schizophrenia, drug abuse, anxiety, and depression (Cardin 2009, Gradinaru 2009, Sohal 2009, Tsai 2009, Witten 2010).
It has been pointed out that beyond its scientific impact, optogenetics also represents an important case study in the value of both ecological conservation (as many of the key tools of optogenetics arise from microbial organisms occupying specialized environmental niches), and in the importance of pure basic science (as these opsins were studied over decades for their own sake by biophysicists and microbiologists, without involving consideration of their potential value in delivering insights into neuroscience and neuropsychiatric disease).
References
- ^ "Benefits of Valkee brain stimulation headset". http://www.valkee.com/uk.+2011-11-22. http://www.valkee.com/uk/valkee-benefits.html#navigation. Retrieved 2011-11-22.
- ^ "Science & research". http://www.valkee.com/uk.+2011-11-22. http://www.valkee.com/fi/tiede.html. Retrieved 2011-11-22.
References
- Adamantidis AR, Zhang F, Aravanis AM, Deisseroth K, de Lecea L (November 2007). "Neural substrates of awakening probed with optogenetic control of hypocretin neurons". Nature 450 (7168): 420–4. Bibcode 2007Natur.450..420A. doi:10.1038/nature06310. PMID 17943086.
- Airan RD, Hu ES, Vijaykumar R, Roy M, Meltzer LA, Deisseroth K (October 2007). "Integration of light-controlled neuronal firing and fast circuit imaging". Curr. Opin. Neurobiol. 17 (5): 587–92. doi:10.1016/j.conb.2007.11.003. PMID 18093822. http://linkinghub.elsevier.com/retrieve/pii/S0959-4388(07)00121-3.
- Airan RD, Thompson KR, Fenno LE, Bernstein H, Deisseroth K (April 2009). "Temporally precise in vivo control of intracellular signalling". Nature 458 (7241): 1025–9. doi:10.1038/nature07926. PMID 19295515.
- Alilain WJ, Li X, Horn KP, et al. (November 2008). "Light-induced rescue of breathing after spinal cord injury". J. Neurosci. 28 (46): 11862–70. doi:10.1523/JNEUROSCI.3378-08.2008. PMC 2615537. PMID 19005051. http://www.jneurosci.org/cgi/pmidlookup?view=long&pmid=19005051.
- Aravanis AM, Wang LP, Zhang F, et al. (September 2007). "An optical neural interface: in vivo control of rodent motor cortex with integrated fiberoptic and optogenetic technology". J Neural Eng 4 (3): S143–56. doi:10.1088/1741-2560/4/3/S02. PMID 17873414. http://stacks.iop.org/1741-2560/4/S143.
- Arenkiel BR, Peca J, Davison IG, et al. (April 2007). "In vivo light-induced activation of neural circuitry in transgenic mice expressing channelrhodopsin-2". Neuron 54 (2): 205–18. doi:10.1016/j.neuron.2007.03.005. PMID 17442243. http://linkinghub.elsevier.com/retrieve/pii/S0896-6273(07)00183-3.
- Atasoy D, Aponte Y, Su HH, Sternson SM (July 2008). "A FLEX switch targets Channelrhodopsin-2 to multiple cell types for imaging and long-range circuit mapping". J. Neurosci. 28 (28): 7025–30. doi:10.1523/JNEUROSCI.1954-08.2008. PMC 2593125. PMID 18614669. http://www.jneurosci.org/cgi/pmidlookup?view=long&pmid=18614669.
- Ayling OG, Harrison TC, Boyd JD, Goroshkov A, Murphy TH (March 2009). "Automated light-based mapping of motor cortex by photoactivation of channelrhodopsin-2 transgenic mice". Nat. Methods 6 (3): 219–24. doi:10.1038/nmeth.1303. PMID 19219033.
- Banghart M, Borges K, Isacoff E, Trauner D, Kramer RH (December 2004). "Light-activated ion channels for remote control of neuronal firing". Nat. Neurosci. 7 (12): 1381–6. doi:10.1038/nn1356. PMC 1447674. PMID 15558062. http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=1447674.
- Berndt, A; Yizhar, O, Gunaydin, LA, Hegemann, P, Deisseroth, K (2009 Feb). "Bi-stable neural state switches.". Nature neuroscience 12 (2): 229–34. doi:10.1038/nn.2247. PMID 19079251. http://www.nature.com/neuro/journal/v12/n2/full/nn.2247.html.
- Bi A, Cui J, Ma YP, et al. (April 2006). "Ectopic expression of a microbial-type rhodopsin restores visual responses in mice with photoreceptor degeneration". Neuron 50 (1): 23–33. doi:10.1016/j.neuron.2006.02.026. PMC 1459045. PMID 16600853. http://linkinghub.elsevier.com/retrieve/pii/S0896-6273(06)00176-0.
- Boyden ES, Zhang F, Bamberg E, Nagel G, Deisseroth K (September 2005). "Millisecond-timescale, genetically targeted optical control of neural activity". Nat. Neurosci. 8 (9): 1263–8. doi:10.1038/nn1525. PMID 16116447.
- Busskamp, V; Duebel, J, Balya, D, Fradot, M, Viney, TJ, Siegert, S, Groner, AC, Cabuy, E, Forster, V, Seeliger, M, Biel, M, Humphries, P, Paques, M, Mohand-Said, S, Trono, D, Deisseroth, K, Sahel, JA, Picaud, S, Roska, B (2010-07-23). "Genetic reactivation of cone photoreceptors restores visual responses in retinitis pigmentosa.". Science 329 (5990): 413–7. doi:10.1126/science.1190897. PMID 20576849. http://www.sciencemag.org/content/329/5990/413.short.
- Cardin JA, Carlén M, Meletis K, et al. (June 2009). "Driving fast-spiking cells induces gamma rhythm and controls sensory responses". Nature 459 (7247): 663–7. doi:10.1038/nature08002. PMID 19396156.
- Cardin, JA; Carlén, M, Meletis, K, Knoblich, U, Zhang, F, Deisseroth, K, Tsai, LH, Moore, CI (2010). "Targeted optogenetic stimulation and recording of neurons in vivo using cell-type-specific expression of Channelrhodopsin-2". Nature protocols 5 (2): 247–54. doi:10.1038/nprot.2009.228. PMID 20134425. http://www.nature.com/nprot/journal/v5/n2/full/nprot.2009.228.html.
- Carter, ME; Adamantidis, A, Ohtsu, H, Deisseroth, K, de Lecea, L (2009-09-02). "Sleep homeostasis modulates hypocretin-mediated sleep-to-wake transitions". Journal of Neuroscience 29 (35): 10939–49. doi:10.1523/JNEUROSCI.1205-09.2009. PMID 19726652. http://www.jneurosci.org/content/29/35/10939.long.
- Carter, ME; Yizhar, O, Chikahisa, S, Nguyen, H, Adamantidis, A, Nishino, S, Deisseroth, K, de Lecea, L (2010 Dec). "Tuning arousal with optogenetic modulation of locus coeruleus neurons". Nature neuroscience 13 (12): 1526–33. doi:10.1038/nn.2682. PMID 21037585. http://www.nature.com/neuro/journal/v13/n12/full/nn.2682.html.
- Chow, B. Y., Han, X., Dobry, A. S., et al. (January 2010). "High-performance genetically targetable optical neural silencing by light-driven proton pumps". Nature 463 (7277): 98–102. doi:10.1038/nature08652. PMC 2939492. PMID 20054397. http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=2939492.
- Claridge-Chang A, Roorda RD, Vrontou E, Sjulson L, Li H, Hirsh, J, Miesenböck G (October 2009). "Writing memories with light-addressable reinforcement circuitry". Cell 139 (2): 405–15. doi:10.1016/j.cell.2009.08.034. PMID 19837039. http://linkinghub.elsevier.com/retrieve/pii/S0092-8674(08)00215-8.
- Clyne JD, Miesenböck G (April 2008). "Sex-specific control and tuning of the pattern generator for courtship song in Drosophila". Cell 133 (2): 354–63. doi:10.1016/j.cell.2008.01.050. PMID 19837039.
- Crick F (December 1999). "The impact of molecular biology on neuroscience". Philos Trans R Soc Lond B Biol Sci 354 (1392): 2021–25. doi:10.1098/rstb.1999.0541. PMC 1692710. PMID 10670022. http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=1692710.
- Deisseroth K, Feng G, Majewska AK, Miesenböck G, Ting A, Schnitzer MJ (October 2006). "Next-generation optical technologies for illuminating genetically targeted brain circuits". J. Neurosci. 26 (41): 10380–6. doi:10.1523/JNEUROSCI.3863-06.2006. PMC 2820367. PMID 17035522. http://www.jneurosci.org/cgi/pmidlookup?view=long&pmid=17035522.
- Deisseroth, Karl. "Optogenetics: Controlling the Brain with Light". http://www.scientificamerican.com/article.cfm?id=optogenetics-controlling.
- Deisseroth K (January 2011). "Optogenetics". Nat Methods 8 (1): 26–9. doi:10.1038/NMETH.F.324. PMID 21191368. http://www.nature.com/nmeth/journal/v8/n1/full/nmeth.f.324.html.
- Diester, I; Kaufman, MT, Mogri, M, Pashaie, R, Goo, W, Yizhar, O, Ramakrishnan, C, Deisseroth, K, Shenoy, KV (2011 Mar). "An optogenetic toolbox designed for primates". Nature neuroscience 14 (3): 387–97. doi:10.1038/nn.2749. PMID 21278729. http://www.nature.com/neuro/journal/v14/n3/full/nn.2749.html.
- Douglass AD, Kraves S, Deisseroth K, Schier AF, Engert F (August 2008). "Escape behavior elicited by single, channelrhodopsin-2-evoked spikes in zebrafish somatosensory neurons". Curr. Biol. 18 (15): 1133–7. doi:10.1016/j.cub.2008.06.077. PMC 2891506. PMID 18682213. http://linkinghub.elsevier.com/retrieve/pii/S0960-9822(08)00959-7.
- Gradinaru V, Thompson KR, Zhang F, et al. (December 2007). "Targeting and readout strategies for fast optical neural control in vitro and in vivo". J. Neurosci. 27 (52): 14231–8. doi:10.1523/JNEUROSCI.3578-07.2007. PMID 18160630. http://www.jneurosci.org/cgi/pmidlookup?view=long&pmid=18160630.
- Gradinaru, V; Thompson, KR, Deisseroth, K (2008 Aug). "eNpHR: a Natronomonas halorhodopsin enhanced for optogenetic applications". Brain cell biology 36 (1–4): 129–39. doi:10.1007/s11068-008-9027-6. PMC 2588488. PMID 18677566. http://www.springerlink.com/content/82jt01028g214216/.
- Gradinaru V, Mogri M, Thompson KR, Henderson JM, Deisseroth K (April 2009). "Optical deconstruction of parkinsonian neural circuitry". Science 324 (5925): 354–9. doi:10.1126/science.1167093. PMID 19299587. http://www.sciencemag.org/cgi/pmidlookup?view=long&pmid=19299587.
- Gourine, AV; Kasymov, V, Marina, N, Tang, F, Figueiredo, MF, Lane, S, Teschemacher, AG, Spyer, KM, Deisseroth, K, Kasparov, S (2010-07-30). "Astrocytes control breathing through pH-dependent release of ATP". Science 329 (5991): 571–5. doi:10.1126/science.1190721. PMID 20647426. http://www.sciencemag.org/content/329/5991/571.short.
- Gradinaru, V; Zhang, F, Ramakrishnan, C, Mattis, J, Prakash, R, Diester, I, Goshen, I, Thompson, KR, Deisseroth, K (2010-04-02). "Molecular and cellular approaches for diversifying and extending optogenetics". Cell 141 (1): 154–65. doi:10.1016/j.cell.2010.02.037. PMID 20303157. http://www.cell.com/retrieve/pii/S009286741000190X.
- Gunaydin, LA; Yizhar, O, Berndt, A, Sohal, VS, Deisseroth, K, Hegemann, P (2010 Mar). "Ultrafast optogenetic control". Nature neuroscience 13 (3): 387–92. doi:10.1038/nn.2495. PMID 20081849. http://www.nature.com/neuro/journal/v13/n3/full/nn.2495.html.
- Han X, Boyden ES (2007). Rustichini, Aldo. ed. "Multiple-color optical activation, silencing, and desynchronization of neural activity, with single-spike temporal resolution". PLoS ONE 2 (3): e299. doi:10.1371/journal.pone.0000299. PMC 1808431. PMID 17375185. http://dx.plos.org/10.1371/journal.pone.0000299.
- Han X, Qian X, Bernstein JG, et al. (April 2009). "Millisecond-timescale optical control of neural dynamics in the nonhuman primate brain". Neuron 62 (2): 191–8. doi:10.1016/j.neuron.2009.03.011. PMC 2830644. PMID 19409264. http://linkinghub.elsevier.com/retrieve/pii/S0896-6273(09)00210-4.
- Haubensak, W; Kunwar, PS, Cai, H, Ciocchi, S, Wall, NR, Ponnusamy, R, Biag, J, Dong, HW, Deisseroth, K, Callaway, EM, Fanselow, MS, Lüthi, A, Anderson, DJ (2010-11-11). "Genetic dissection of an amygdala microcircuit that gates conditioned fear". Nature 468 (7321): 270–6. doi:10.1038/nature09553. PMID 21068836. http://www.nature.com/nature/journal/v468/n7321/full/nature09553.html.
- Hira R, Honkura N, Noguchi J, et al. (May 2009). "Transcranial optogenetic stimulation for functional mapping of the motor cortex". J. Neurosci. Methods 179 (2): 258–63. doi:10.1016/j.jneumeth.2009.02.001. PMID 19428535. http://linkinghub.elsevier.com/retrieve/pii/S0165-0270(09)00080-6.
- Hu, ES; Airan, RD, Vijaykumar, R, Deisseroth, K (2008 Jul). "Brain circuit dynamics". The American journal of psychiatry 165 (7): 800. doi:10.1176/appi.ajp.2008.08050764. PMID 18593784. http://ajp.psychiatryonline.org/cgi/content/full/165/7/800.
- Huber D, Petreanu L, Ghitani N, et al. (January 2008). "Sparse optical microstimulation in barrel cortex drives learned behaviour in freely moving mice". Nature 451 (7174): 61–4. doi:10.1038/nature06445. PMID 18094685.
- Hwang, RY; Zhong, L, Xu, Y, Johnson, T, Zhang, F, Deisseroth, K, Tracey, WD (2007-12-18). "Nociceptive neurons protect Drosophila larvae from parasitoid wasps". Current biology : CB 17 (24): 2105–16. doi:10.1016/j.cub.2007.11.029. PMC 2225350. PMID 18060782. http://www.cell.com/current-biology/retrieve/pii/S0960982207022683.
- Johansen, JP; Hamanaka, H, Monfils, MH, Behnia, R, Deisseroth, K, Blair, HT, LeDoux, JE (2010-07-13). "Optical activation of lateral amygdala pyramidal cells instructs associative fear learning". Proceedings of the National Academy of Sciences of the United States of America 107 (28): 12692–7. doi:10.1073/pnas.1002418107. PMC 2906568. PMID 20615999. http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=2906568.
- Kim JM, Hwa J, Garriga P, Reeves PJ, RajBhandary UL, Khorana HG (February 2005). "Light-driven activation of beta 2-adrenergic receptor signaling by a chimeric rhodopsin containing the beta 2-adrenergic receptor cytoplasmic loops". Biochemistry 44 (7): 2284–92. doi:10.1021/bi048328i. PMID 15709741.
- Kravitz, AV; Freeze, BS, Parker, PR, Kay, K, Thwin, MT, Deisseroth, K, Kreitzer, AC (2010-07-29). "Regulation of parkinsonian motor behaviours by optogenetic control of basal ganglia circuitry". Nature 466 (7306): 622–6. doi:10.1038/nature09159. PMID 20613723. http://www.nature.com/nature/journal/v466/n7306/full/nature09159.html.
- Kuhlman SJ, Huang ZJ (2008). Wong, Rachel O. L.. ed. "High-resolution labeling and functional manipulation of specific neuron types in mouse brain by Cre-activated viral gene expression". PLoS ONE 3 (4): e2005. doi:10.1371/journal.pone.0002005. PMC 2289876. PMID 18414675. http://dx.plos.org/10.1371/journal.pone.0002005.
- Lagali PS, Balya D, Awatramani GB, et al. (June 2008). "Light-activated channels targeted to ON bipolar cells restore visual function in retinal degeneration". Nat. Neurosci. 11 (6): 667–75. doi:10.1038/nn.2117. PMID 18432197.
- Lee, JH; Durand, R, Gradinaru, V, Zhang, F, Goshen, I, Kim, DS, Fenno, LE, Ramakrishnan, C, Deisseroth, K (2010-06-10). "Global and local fMRI signals driven by neurons defined optogenetically by type and wiring". Nature 465 (7299): 788–92. doi:10.1038/nature09108. PMID 20473285. http://www.nature.com/nature/journal/v465/n7299/full/nature09108.html.
- Levskaya, A; Weiner, OD, Lim, WA, Voigt, CA (2009-10-15). "Spatiotemporal control of cell signalling using a light-switchable protein interaction". Nature 461 (7266): 997–1001. doi:10.1038/nature08446. PMC 2989900. PMID 19749742. http://www.nature.com/nature/journal/v461/n7266/full/nature08446.html.
- Li, HH; Roy, M, Kuscuoglu, U, Spencer, CM, Halm, B, Harrison, KC, Bayle, JH, Splendore, A, Ding, F, Meltzer, LA, Wright, E, Paylor, R, Deisseroth, K, Francke, U (2009 Apr). "Induced chromosome deletions cause hypersociability and other features of Williams-Beuren syndrome in mice". EMBO molecular medicine 1 (1): 50–65. doi:10.1002/emmm.200900003. PMID 20049703.
- Liewald JF, Brauner M, Stephens GJ, et al. (October 2008). "Optogenetic analysis of synaptic function". Nat. Methods 5 (10): 895–902. doi:10.1038/nmeth.1252. PMID 18794862.
- Lima SQ, Miesenböck G (April 2005). "Remote control of behavior through genetically targeted photostimulation of neurons". Cell 121 (1): 141–52. doi:10.1016/j.cell.2005.02.004. PMID 15820685. http://linkinghub.elsevier.com/retrieve/pii/S0092-8674(05)00115-7.
- Lima SQ, Hromádka T, Znamenskiy P, Zador AM (2009). Nitabach, Michael N.. ed. "PINP: a new method of tagging neuronal populations for identification during in vivo electrophysiological recording". PLoS ONE 4 (7): e6099. doi:10.1371/journal.pone.0006099. PMC 2702752. PMID 19584920. http://dx.plos.org/10.1371/journal.pone.0006099.
- Lin JY, Lin MZ, Steinbach P, Tsien RY (March 2009). "Characterization of engineered channelrhodopsin variants with improved properties and kinetics". Biophys. J. 96 (5): 1803–14. doi:10.1016/j.bpj.2008.11.034. PMC 2717302. PMID 19254539. http://linkinghub.elsevier.com/retrieve/pii/S0006-3495(09)00016-2.
- Liu Q, Hollopeter G, Jorgensen EM (June 2009). "Graded synaptic transmission at the Caenorhabditis elegans neuromuscular junction". Proc. Natl. Acad. Sci. U.S.A. 106 (26): 10823–8. doi:10.1073/pnas.0903570106. PMC 2705609. PMID 19528650. http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=2705609.
- Llewellyn, ME; Thompson, KR, Deisseroth, K, Delp, SL (2010 Oct). "Orderly recruitment of motor units under optical control in vivo". Nature medicine 16 (10): 1161–5. doi:10.1038/nm.2228. PMID 20871612. http://www.nature.com/nm/journal/v16/n10/full/nm.2228.html.
- Lobo, MK; Covington HE, 3rd, Chaudhury, D, Friedman, AK, Sun, H, Damez-Werno, D, Dietz, DM, Zaman, S, Koo, JW, Kennedy, PJ, Mouzon, E, Mogri, M, Neve, RL, Deisseroth, K, Han, MH, Nestler, EJ (2010-10-15). "Cell type-specific loss of BDNF signaling mimics optogenetic control of cocaine reward". Science 330 (6002): 385–90. doi:10.1126/science.1188472. PMC 3011229. PMID 20947769. http://www.sciencemag.org/content/330/6002/385.short.
- Editorial (2010). "Method of the Year 2010". Nature Methods 8 (1): 1–1. doi:10.1038/nMeth.F.321.
- Miesenböck G (October 2008). "Lighting up the brain". Sci. Am. 299 (4): 52–9. doi:10.1038/scientificamerican1008-52. PMID 18847085.
- Miesenböck G (October 2009). "The optogenetic catechism". Science 326 (5951): 395–9. doi:10.1126/science.1174520. PMID 19833960.
- Miller G (December 2006). "Optogenetics. Shining new light on neural circuits". Science 314 (5806): 1674–6. doi:10.1126/science.314.5806.1674. PMID 17170269. http://www.sciencemag.org/cgi/pmidlookup?view=long&pmid=17170269.
- Nagel G, Brauner M, Liewald JF, Adeishvili N, Bamberg E, Gottschalk A (December 2005). "Light activation of channelrhodopsin-2 in excitable cells of Caenorhabditis elegans triggers rapid behavioral responses". Curr. Biol. 15 (24): 2279–84. doi:10.1016/j.cub.2005.11.032. PMID 16360690. http://linkinghub.elsevier.com/retrieve/pii/S0960-9822(05)01407-7.
- Ryu, MH; Moskvin, OV, Siltberg-Liberles, J, Gomelsky, M (2010-12-31). "Natural and engineered photoactivated nucleotidyl cyclases for optogenetic applications". The Journal of biological chemistry 285 (53): 41501–8. doi:10.1074/jbc.M110.177600. PMC 3009876. PMID 21030591. http://www.jbc.org/content/285/53/41501.long.
- Schneider, MB; Gradinaru, V, Zhang, F, Deisseroth, K (2008 May). "Controlling neuronal activity". The American journal of psychiatry 165 (5): 562. doi:10.1176/appi.ajp.2008.08030444. PMID 18450936. http://ajp.psychiatryonline.org/cgi/content/full/165/5/562.
- Schröder-Lang S, Schwärzel M, Seifert R, et al. (January 2007). "Fast manipulation of cellular cAMP level by light in vivo". Nature Methods 4 (1): 39–42. doi:10.1038/nmeth975. PMID 17128267.
- Sohal VS, Zhang F, Yizhar O, Deisseroth K (June 2009). "Parvalbumin neurons and gamma rhythms enhance cortical circuit performance". Nature 459 (7247): 698–702. doi:10.1038/nature07991. PMID 19396159.
- Stierl M, Stumpf P, Udwari D, et al. (Jan 2011). "Light modulation of cellular cAMP by a small bacterial photoactivated adenylyl cyclase, bPAC, of the soil bacterium Beggiatoa". J. Biol. Chem. 286 (2): 1181–8. doi:10.1074/jbc.M110.185496. PMC 3020725. PMID 21030594. http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3020725.
- Szobota S, Gorostiza P, Del Bene F, et al. (May 2007). "Remote control of neuronal activity with a light-gated glutamate receptor". Neuron 54 (4): 535–45. doi:10.1016/j.neuron.2007.05.010. PMID 17521567. http://linkinghub.elsevier.com/retrieve/pii/S0896-6273(07)00344-3.
- Tecuapetla, F; Patel, JC, Xenias, H, English, D, Tadros, I, Shah, F, Berlin, J, Deisseroth, K, Rice, ME, Tepper, JM, Koos, T (2010-05-19). "Glutamatergic signaling by mesolimbic dopamine neurons in the nucleus accumbens". Journal of Neuroscience 30 (20): 7105–10. doi:10.1523/JNEUROSCI.0265-10.2010. PMID 20484653. http://www.jneurosci.org/content/30/20/7105.long.
- Toni N, Laplagne DA, Zhao C, et al. (August 2008). "Neurons born in the adult dentate gyrus form functional synapses with target cells". Nat. Neurosci. 11 (8): 901–7. doi:10.1038/nn.2156. PMC 2572641. PMID 18622400. http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=2572641.
- Tønnesen, J; Sørensen, AT, Deisseroth, K, Lundberg, C, Kokaia, M (2009-07-21). "Optogenetic control of epileptiform activity". Proceedings of the National Academy of Sciences of the United States of America 106 (29): 12162–7. doi:10.1073/pnas.0901915106. PMC 2715517. PMID 19581573. http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=2715517.
- Tsai HC, Zhang F, Adamantidis A, et al. (May 2009). "Phasic firing in dopaminergic neurons is sufficient for behavioral conditioning". Science 324 (5930): 1080–4. doi:10.1126/science.1168878. PMID 19389999. http://www.sciencemag.org/cgi/pmidlookup?view=long&pmid=19389999.
- Wang S, Szobota S, Wang Y, et al. (December 2007). "All optical interface for parallel, remote, and spatiotemporal control of neuronal activity". Nano Lett. 7 (12): 3859–63. doi:10.1021/nl072783t. PMID 18034506.
- Wang H, Peca J, Matsuzaki M, et al. (May 2007). "High-speed mapping of synaptic connectivity using photostimulation in Channelrhodopsin-2 transgenic mice". Proc. Natl. Acad. Sci. U.S.A. 104 (19): 8143–8. doi:10.1073/pnas.0700384104. PMC 1876585. PMID 17483470. http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=1876585.
- Wang, Y; Dye, CA, Sohal, V, Long, JE, Estrada, RC, Roztocil, T, Lufkin, T, Deisseroth, K, Baraban, SC, Rubenstein, JL (2010-04-14). "Dlx5 and Dlx6 regulate the development of parvalbumin-expressing cortical interneurons". Journal of Neuroscience 30 (15): 5334–45. doi:10.1523/JNEUROSCI.5963-09.2010. PMC 2919857. PMID 20392955. http://www.jneurosci.org/content/30/15/5334.long.
- Weick, JP; Johnson, MA, Skroch, SP, Williams, JC, Deisseroth, K, Zhang, SC (2010 Nov). "Functional control of transplantable human ESC-derived neurons via optogenetic targeting". Stem cells (Dayton, Ohio) 28 (11): 2008–16. doi:10.1002/stem.514. PMC 2988875. PMID 20827747. http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=2988875.
- Witten, IB; Lin, SC, Brodsky, M, Prakash, R, Diester, I, Anikeeva, P, Gradinaru, V, Ramakrishnan, C, Deisseroth, K (2010-12-17). "Cholinergic interneurons control local circuit activity and cocaine conditioning". Science 330 (6011): 1677–81. doi:10.1126/science.1193771. PMID 21164015. http://www.sciencemag.org/content/330/6011/1677.short.
- Wu, YI; Frey, D, Lungu, OI, Jaehrig, A, Schlichting, I, Kuhlman, B, Hahn, KM (2009-09-03). "A genetically encoded photoactivatable Rac controls the motility of living cells". Nature 461 (7260): 104–8. doi:10.1038/nature08241. PMC 2766670. PMID 19693014. http://www.nature.com/nature/journal/v461/n7260/full/nature08241.html.
- Yazawa, M; Sadaghiani, AM, Hsueh, B, Dolmetsch, RE (2009 Oct). "Induction of protein-protein interactions in live cells using light". Nature biotechnology 27 (10): 941–5. doi:10.1038/nbt.1569. PMID 19801976. http://www.nature.com/nbt/journal/v27/n10/full/nbt.1569.html.
- Zemelman BV, Lee GA, Ng M, Miesenböck G (January 2002). "Selective photostimulation of genetically chARGed neurons". Neuron 33 (1): 15–22. doi:10.1016/S0896-6273(01)00574-8. PMID 11779476. http://linkinghub.elsevier.com/retrieve/pii/S0896627301005748.
- Zemelman BV, Nesnas N. Lee GA, Miesenböck G (February 2003). "Photochemical gating of heterologous ion channels: remote control over genetically designated populations of neurons". Proc. Natl. Acad. Sci. USA 100 (3): 1352–7. doi:10.1073/pnas.242738899. PMC 298776. PMID 12540832. http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=298776.
- Zhang F, Wang LP, Boyden ES, Deisseroth K (October 2006). "Channelrhodopsin-2 and optical control of excitable cells". Nat. Methods 3 (10): 785–92. doi:10.1038/nmeth936. PMID 16990810.
- Zhang F, Wang LP, Brauner M, et al. (April 2007). "Multimodal fast optical interrogation of neural circuitry". Nature 446 (7136): 633–9. doi:10.1038/nature05744. PMID 17410168.
- Zhang F, Aravanis AM, Adamantidis A, de Lecea L, Deisseroth K (August 2007). "Circuit-breakers: optical technologies for probing neural signals and systems". Nat. Rev. Neurosci. 8 (8): 577–81. doi:10.1038/nrn2192. PMID 17643087.
- Zhang YP, Holbro N, Oertner TG (August 2008). "Optical induction of plasticity at single synapses reveals input-specific accumulation of alphaCaMKII". Proc. Natl. Acad. Sci. U.S.A. 105 (33): 12039–44. doi:10.1073/pnas.0802940105. PMC 2575337. PMID 18697934. http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=2575337.
- Zhang F, Prigge M, Beyrière F, et al. (June 2008). "Red-shifted optogenetic excitation: a tool for fast neural control derived from Volvox carteri". Nat. Neurosci. 11 (6): 631–3. doi:10.1038/nn.2120. PMC 2692303. PMID 18432196. http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=2692303.
- Zhang, F; Gradinaru, V, Adamantidis, AR, Durand, R, Airan, RD, de Lecea, L, Deisseroth, K (2010). "Optogenetic interrogation of neural circuits: technology for probing mammalian brain structures". Nature protocols 5 (3): 439–56. doi:10.1038/nprot.2009.226. PMID 20203662. http://www.nature.com/nprot/journal/v5/n3/full/nprot.2009.226.html.
- Zhang, J; Laiwalla, F, Kim, JA, Urabe, H, Van Wagenen, R, Song, YK, Connors, BW, Zhang, F, Deisseroth, K, Nurmikko, AV (2009 Oct). "Integrated device for optical stimulation and spatiotemporal electrical recording of neural activity in light-sensitized brain tissue". Journal of neural engineering 6 (5): 055007. doi:10.1088/1741-2560/6/5/055007. PMC 2921864. PMID 19721185. http://iopscience.iop.org/1741-2552/6/5/055007/.
- Zhao, S; Cunha, C, Zhang, F, Liu, Q, Gloss, B, Deisseroth, K, Augustine, GJ, Feng, G (2008 Aug). "Improved expression of halorhodopsin for light-induced silencing of neuronal activity". Brain cell biology 36 (1–4): 141–54. doi:10.1007/s11068-008-9034-7. PMC 3057022. PMID 18931914. http://www.springerlink.com/content/1084j31q82915t71/.
- Zhu, P; Narita, Y, Bundschuh, ST, Fajardo, O, Schärer, YP, Chattopadhyaya, B, Bouldoires, EA, Stepien, AE, Deisseroth, K, Arber, S, Sprengel, R, Rijli, FM, Friedrich, RW (2009-12-11). "Optogenetic Dissection of Neuronal Circuits in Zebrafish using Viral Gene Transfer and the Tet System". Frontiers in neural circuits 3: 21. doi:10.3389/neuro.04.021.2009. PMC 2805431. PMID 20126518. http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=2805431.
- Zimmermann, G; Wang, LP, Vaughan, AG, Manoli, DS, Zhang, F, Deisseroth, K, Baker, BS, Scott, MP (2009). Nitabach, Michael N.. ed. "Manipulation of an innate escape response in Drosophila: photoexcitation of acj6 neurons induces the escape response". PloS one 4 (4): e5100. doi:10.1371/journal.pone.0005100. PMC 2660433. PMID 19340304. http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=2660433.
External links
- Optogenetics Resource Center, maintained by the Deisseroth lab.
- Synthetic Neurobiology Group, MIT, the portal of the Boyden lab.
- Sohal lab portal
- Nurmikko lab portal
- Lee lab portal
- [1], Lab of Dr. Zhuo-Hua Pan
- OpenOptogenetics.org, optogenetics wiki, maintained from the Champalimaud Institute.
- Optophysiology at the Tyler lab
- Human brain is photosensitive
Brain–computer interface Technologies Biomechatronics · Brain implant · BrainGate · Brainport · Cyberware · Exocortex · Intelligence amplification · Isolated brain · Neuroprosthetics · Neurotechnology · Optogenetics · Sensory substitution · Synthetic telepathyScientific phenomena Disciplines Speculative People Charles Stross · Douglas Engelbart · Hugh Herr · J. C. R. Licklider · Kevin Warwick · Matt Nagle · Merlin Donald · Miguel Nicolelis · Peter Kyberd · Steve Mann · Vernor Vinge · Yoky Matsuoka · Edward BoydenOther Categories:- Neuroscience
- Biological techniques and tools
- Cybernetics
- Control theory
- Brain-computer interfacing
- Neuroprosthetics
- Neural engineering
Wikimedia Foundation. 2010.