McDonnell Douglas MD-80

McDonnell Douglas MD-80
MD-80 series
Jet airliner with two rear-mounted engines on takeoff
Iberia MD-88
Role Narrow-body jet airliners
First flight October 18, 1979
Introduction 1980 with Swissair and Austrian Airlines
Status Active service
Primary users American Airlines
Delta Air Lines
Allegiant Air
Produced 1979–1999
Number built 1,191
Unit cost US$41.5–48.5 million
Developed from McDonnell Douglas DC-9
Variants McDonnell Douglas MD-90
Boeing 717

The McDonnell Douglas MD-80 is a family of twin-engine, short- to medium-range, single-aisle commercial jet airliners. The MD-80 series were lengthened and updated from the DC-9. The airliner family can seat from 130 up to 172 passengers depending on variant and seating configuration.

The MD-80 series was introduced into commercial service on October 10, 1980 by Swissair. The series includes the MD-81, MD-82, MD-83, MD-87, and MD-88. These all have the same fuselage length except the shortened MD-87. The MD-80 series was followed into service in modified form by the MD-90 in 1995 and the MD-95/Boeing 717 in 1999.


Design and development


Douglas Aircraft developed the DC-9 in the 1960s as a short-range companion to their larger DC-8.[1] The DC-9 was an all-new design, using two rear fuselage-mounted turbofan engines, and a T-tail. The DC-9 has a narrow-body fuselage design with 5-abreast seating, and holds 80 to 135 passengers depending on seating arrangement and aircraft version.

The MD-80 series was the second generation of the DC-9. It was originally called the DC-9-80 series and the DC-9 Super 80[2] and entered service in 1980. The MD-80 series was then developed into the MD-90 entering service in 1995. The last variant of the family was the MD-95, which was renamed the Boeing 717-200 after McDonnell Douglas's merger with Boeing in 1997.

The DC-9 family is one of the most successful jet airliners with a total of over 2,400 units produced; it ranks third behind the second place Airbus A320 family with over 4,000 produced, and the first place Boeing 737 with over 6,000 produced.

MD-80 series

The MD-80 series is a mid-size, medium-range airliner that was introduced in 1980. The design was the second generation of the DC-9 with two rear fuselage-mounted turbofan engines, small, highly efficient wings, and a T-tail. The aircraft has distinctive 5-abreast seating in coach class. It was a lengthened DC-9-50 with a higher maximum take-off weight (MTOW) and a higher fuel capacity. The aircraft series was designed for frequent, short-haul flights for 130 to 172 passengers depending on plane version and seating arrangement.

Scandinavian Airlines MD-81 taking off

The development of MD-80 series began in the 1970s as a growth version of the DC-9 Series 50. Availability of new Pratt & Whitney JT8D higher bypass engines drove early studies including designs known as Series 55, Series 50 (Re-fanned Super Stretch), and Series 60. The design effort focused on the Series 55 in August 1977. With the projected entry into service in 1980, the design was marketed as the DC-9 Series 80. Swissair launched the Series 80 in October 1977 with an order for 15 plus an option for five.[1]

The Series 80 featured a fuselage 14 feet 3 in (4.34 m) longer than the DC-9-50. The DC-9 wings were redesigned by adding sections at the wing root and tip for a 28% larger wing. The initial Series 80 first flew October 19, 1979.[1]

It entered service in 1980. Originally it was certified as a version of the DC-9, but was changed to MD-80 in July 1983, as a marketing move. New versions of the series were initially the MD-81/82/83 and the shortened MD-87, even though their formal certification was DC-9-81/82 etc. Only the MD-88 was given an "MD" certification, as was the later MD-90.

Spanish airline Spanair MD-83 at Leeds Bradford Airport, UK

The MD-80 versions have cockpit, avionics and aerodynamic upgrades along with the more powerful, more efficient and quieter JT8D-200 series engines, which are a significant upgrade over the smaller JT8D-15, -17, -11, and -9 series. The MD-80 series aircraft also have longer fuselages than their earlier DC-9 counterparts, as well as longer range. Some customers, such as American Airlines, still refer to the planes in fleet documentation as "Super 80". This model is still flown extensively by American Airlines and Delta Air Lines. Comparable airliners to the MD-80 series include the Boeing 737 and Airbus A320.

Flight testing and certification

The first MD-80, DC-9 line number 909, made its first flight on October 19, 1979. Test flying, despite two aircraft being substantially damaged in accidents, was completed on August 25, 1980, when the first variant of MD-80, the JT8D-209-powered MD-81 (or DC-9-81), was certificated under an amendment to the FAA Type Certificate for the DC-9. The flight testing leading up to certification had involved three aircraft accumulating a total of 1085 flying hours on 795 flights. The first delivery, to launch customer Swissair took place on September 13, 1980.[3]

Model designation

As the MD-80 was not in effect a new aircraft, it continues to be operated under an amendment to the original DC-9 FAA aircraft Type Certificate (a similar case to the later MD-90 and Boeing 717 aircraft). The Type Certificate issued to the aircraft manufacturer carries the aircraft model designations exactly as it appears on the manufacturer's application, including use of hyphens or decimal points, and should match what is stamped on the aircraft's data or nameplate. What the manufacturer chooses to call an aircraft for marketing or promotional purposes is irrelevant to the airworthiness authorities. The first amendment to the DC-9 type certificate for the new MD-80 aircraft was applied as DC-9-81 which approved on August 26, 1980. All MD-80 models have since been approved under additional amendments to the DC-9 Type Certificate. In 1983, McDonnell Douglas decided that the DC-9-80 (Super 80) would be designated the MD-80. However, instead of merely using the MD- prefix as a marketing symbol, an application was made to again amend the Type Certificate to include the MD-81, MD-82, and MD-83. This change was dated March 10, 1986, and the Type Certificate declared that although the MD designator could be used in parentheses, it must be accompanied by the official designation, for example: DC-9-81 (MD-81). All Long Beach aircraft in the MD-80 series thereafter had MD-81, MD-82, or MD-83 stamped on the aircraft nameplate.

Although not certified until October 21, 1987, McDonnell Douglas had already applied for models DC-9-87 and DC-9-87F on February 14, 1985. Third derivative was similarly officially designated DC-9-87 (MD-87), although no nameplates were stamped DC-9-87. For the MD-88, an application for a Type Certificate model amendment was made after the earlier changes, so there never was a DC-9-88, only the MD-88, which was certificated on December 8, 1987.[4] The FAA's online aircraft registry database however does show the DC-9-88 and DC-9-80 designations in existence but unused.[5]

MD-80 production

Fligh deck of a Viking Airlines MD-83

The MD-80 was produced on a common line with the DC-9 with which it shares its line number sequence. However after the delivery of 976 DC-9s and 108 MD-80s, McDonnell Douglas stopped DC-9 production. Hence, commencing with the 1,085th DC-9/MD-80 delivery, an MD-82 for VIASA in December 1982, all DC-9s produced were Series 80s/MD-80s.

In addition to the Long Beach, California line, a second assembly line was set up at Shanghai, where aircraft were to be built under license.[citation needed]

During 1991, MD-80 production had reached a peak of 12 per month, having been running at approximately 10 per month since 1987 and was expected to continue at this rate in the near term (140 MD-80s were delivered in 1991). As a result of the decline in the air traffic and a slow market response to the MD-90, MD-80 production has been reduced, and 84 aircraft were handed over in 1992. A further production rate cut saw 42 MD-80s delivered during 1993 (3.5 per month) and 22 aircraft were handed over.[3] MD-80 production ended in 1999.

Derivative designs

The MD-90 was developed from the MD-80 series and is a 5-foot-longer (1.5 m), updated version of the MD-88 with a similar electronic flight instrument system (EFIS) (glass cockpit), and improved, and quieter IAE V2500 turbofan engines. The MD-90 program was begun in 1989, first flown in 1993, and entered commercial service in 1995.

A number of other variants were proposed that never entered production. One proposal was the MD-94X which was fitted with unducted fan turbofan engines. Previously, an MD-81 was used as a testbed for unducted fan engines, such as the General Electric GE36 and the Pratt & Whitney/Allison 578-DX.[6]

The MD-95 was developed to replace early DC-9 models, then approaching 30 years old. The project completely overhauled the original DC-9 into a modern airliner. It is slightly longer than the DC-9-30 and is powered by new Rolls-Royce BR715 engines. The MD-95 was renamed Boeing 717 after the McDonnell Douglas—Boeing merger in 1997.

Operational history

A Delta MD-88 at Will Rogers World Airport in Oklahoma City, Oklahoma, USA

The MD-80 series has been used by airlines around the world. Major customers have included Aeroméxico, Aerorepublica, Alaska Airlines, Alitalia, Allegiant Air, American Airlines, Austral Líneas Aéreas, Austrian Airlines, Avianca, China Eastern Airlines, China Northern Airlines, Delta Air Lines, Finnair, Iberia, Japan Air System (JAS), Korean Air, Lion Air, Martinair Holland, Reno Air, Scandinavian Airlines System (SAS), Spanair, Insel Air, and Swissair.[7]

Due to the usage of the aging JT8D engine, the MD-80 is not fuel efficient compared to the A320 or newer 737 models; it burns 1,050 gallons of jet fuel per hour on a typical flight, while the larger Boeing 737-800 burns only 850 gallons per hour (19% reduction). Many airlines have started to retire the type in the 2000s. Alaska Airlines' tipping point in using the 737-800 was the $4 per gallon price of jet fuel the airline was paying by the summer of 2008; the airline stated that a typical Los Angeles-Seattle flight would cost $2,000 less, using a Boeing 737-800, than the same flight using an MD-80. American Airlines has announced plans to retire at least 20 MD-80s,[8] and has accelerated delivery of new 737-800s,[9] while Midwest Airlines announced on July 14, 2008, that it would retire all 12 of its MD-80s (used primarily on routes to the west coast) by the fall.[10][11] The JT8D's comparatively lower maintenance costs due to simpler design help narrow the fuel cost gap.[12]



MD-81 (DC-9-81)

The MD-81 (or as it was originally known the DC-9 Super 81) was the first production model of the MD-80, and apart from the MD-87, the differences between the various long body MD-80 variants is relatively minor. The four long body models (MD-81, MD-82, MD-83, and MD-88) only differ from each other in having different engine variants, fuel capacities, and weights. The MD-88 and later build versions of the other models have more up-to-date flight decks featuring for example EFIS.

Dimensions: The basic "long body" MD-80 versions (MD-81, MD-82, MD-83, and MD-88) have an overall length of 147 feet 10 inches (45.06 m), and a fuselage length of 136 feet 5 inches (41.58 m) that is 4.62 m longer than the DC-9-50 and 13.51 m longer than the initial DC-9, the Series 10. Wingspan was also increased by 4.4 m in comparison with earlier DC-9s at 107 feet 10.2 inches (32.873 m). The aircraft's passenger cabin, from cockpit door to aft bulkhead, is 101 feet 0 inches (30.78 m) long and, as with all versions of the DC-9, has a maximum cabin width (trim-to-trim) of 123.7 inches (3.14 m).[16]

Powerplant: The initial production version of the MD-80 was the Pratt and Whitney JT8D-209 18,500 lbf (82 kN) thrust powered MD-81. Later build MD-81s have been delivered with more powerful JT8D-217 and -219 engines.

APU: All versions of the MD-80 are equipped with an AlliedSignal (Garrett) GTCP85-98D APU as standard which is located in the aft fuselage.

Performance: Standard MTOW on the MD-81 is 140,000 lb with the option to increase to 142,000 lb. Fuel capacity is 5,840 US gallons (22,100 L), and typical range, with 155 passengers, is 1,565 nmi.[3]

Flight Deck: The MD-80 is equipped with a two crew flightdeck similar to that on the DC-9 from which it evolved. Later models could be equipped to a higher specification with EFIS displays in place of the traditional analogue instruments, TCAS, windshear detection, etc. An EFIS retrofit to non-EFIS equipped aircraft is possible.

Cabin: Typical passenger cabin seating arrangements include:[3]

A mixed class, with aft full service galley, configuration for a total of 135 passengers with 12 first class, four-abreast 36 in seat pitch.
123 economy class passengers, five-abreast, 32 in pitch.
All economy layout for 155 passengers, five-abreast, 32 in and 33 in pitch.
A typical high density layout is for 167 one class (ie Airtours).

Undercarriage: All versions of the MD-80 are equipped with a tricycle undercarriage, featuring a twin nose unit with spray deflector and twin main units with rock deflectors. The MD-80T, developed for the Chinese, differs in that the main units are each fitted with a four wheel double main bogey undercarriage to reduce pavement loading.[3][15]

Aerodynamic Improvements: From mid-1987 new MD-87-style low drag "beaver" tail cones were introduced on all Series of MD-80s reducing drag and hence improving fuel burn. However it would seem that some operators have been modifying the old DC-9-style cones on earlier build MD-80s to the new low drag style. SAS is one airline that has done this, citing both the improved economics as well as cosmetic improvement for the modification.[3]

MD-81 timeline

  • Formal launch: October 1977.
  • First flight: October 18, 1979.
  • FAA certification: August 25, 1980.
  • First delivery: September 13, 1980 to Swissair
  • Entry into service: October 10, 1980 with Swissair on a flight from Zurich to Heathrow.
  • Last delivery: June 29, 1992 to Scandinavian Airlines (SAS)

MD-82 (DC-9-82)

An Alitalia MD-82

Announced on April 16, 1979, the MD-82 was a new MD-80 variant dimensionally similar to the MD-81 but equipped with more powerful engines. The MD-82 was intended for operation from 'hot and high' airports but also offered greater payload/range when in use at 'standard' airfields. American Airlines is the worlds largest operator of the MD-82, with at one point over 300 MD-82s in the fleet, but the number now stands around 200.

Powerplant: Originally certificated with 20,000 lbf (89 kN) thrust JT8D-217s, a -217A powered MD-82 was certificated in mid-1982 and became available in Autumn 1982. The new version featured a higher MTOW (149,500 lb), while the JT8D-217As had a guaranteed take-off thrust at temperature of up to 29 degrees C or 5,000 ft altitude. The JT8D-217C engines were also offered on the MD-82 giving improved sfc. Several operators have taken delivery of the -219-powered MD-82s, while Balair ordered its MD-82s powered by the lower thrust -209 engine.[3][15]

Performance: The MD-82 features an increased standard MTOW initially to 147,000 lb, and this was later increased to 149,500 lb. Standard fuel capacity is the same as the MD-81, 5,840 US gal, and typical range with 155 passengers is 2,050 nautical miles (3,800 km).[3][15]

A Lion Air MD-82 boarding at Sultan Syarif Kasim II Airport, Indonesia, 2006.

MD-82 timeline

  • Announced/go-ahead: April 16, 1979.
  • First flight: January 8, 1981.
  • FAA certification: July 29, 1981.
  • First delivery: August 5, 1981 to Republic Airlines.
  • Entry into service: August, 1981 with Republic Airlines.
  • Last delivery: November 17, 1997 to U-Land Airlines of Taiwan.

The MD-82 was assembled under licence in Shanghai by the Shanghai Aviation Industrial Corporation (SAIC) since November 1986; the sub-assemblies were delivered by McDonnell Douglas in kit form.[3]

MD-83 (DC-9-83)

Spanair MD-83

The MD-83 is a longer range development of the basic MD-81/82 with higher weights, more powerful engines, increased fuel capacity and longer range.

Powerplant: Compared to earlier models, the MD-83 is equipped with slightly more powerful 21,000 lbf (93 kN) thrust Pratt and Whitney JT8D-219s as standard.

Performance: The MD-83 features increased fuel capacity as standard (to 6,970 US gal) which is carried in two 565 US gallons auxiliary tanks located fore and aft of the centre section. The aircraft also has higher operating weights, with MTOW increased to 160,000 lb and MLW to 139,500 lb. Typical range for the MD-83 with 155 passengers is around 2,504 nautical miles (4,637 km). To cope with the higher operating weights, the MD-83 incorporates strengthened landing gear including new wheels, tires and brakes, changes to the wing skins, front spar web and elevator spar cap and strengthened floor beams and panels to carry the auxiliary fuel tanks. However, from MD-80 line number 1194, an MD-81 delivered in September 1985, it is understood that all MD-80s have the same basic wing structure and in theory could be converted to MD-83 standard.[3]

MD-83 timeline

  • Announced/go-ahead: January 31, 1983.
  • First flight: December 17, 1984.
  • FAA certification: October 17, 1985 (MTOW 149,500 lb). MTOW of 160,000 lb certificated November 4, 1985.
  • First delivery: February, 1985 to Alaska Airlines - initially as -82 powered by -217A engines and certificated as MD-82s. Alaska Airlines' first four aircraft were subsequently re-engined and re-certificated as MD-83s.
  • Entry into service: February, 1985 with Alaska Airlines.
  • Last delivery: December 28, 1999 to TWA.

MD-87 (DC-9-87)

A Spanair MD-87

In January 1985 McDonnell Douglas announced that it was to produce a shorter fuselage MD-80 development aircraft, designated the MD-87, which would seat between 109 and 130 passengers depending upon configuration. The designation was intended to indicate its planned date of entry into service, 1987.

Dimensions: With an overall length of 130 feet 5 inches (39.75 m), the MD-87 is 17 feet 4 inches (5.28 m) shorter than the other MD-80s but is otherwise generally similar to them, employing the same engines, systems and flight deck. The MD-87 features modifications to its tail, with a fin extension above the tailplane. It also introduced a new low drag "beaver" tail cone which became standard on all MD-80s.

Powerplant: The MD-87 was offered with either the 20,000 lbf (89 kN) thrust JT8D-217C or the 21,000 lbf (93 kN) thrust -219.

Performance: Two basic versions of the MD-87 were made available with either an MTOW of 140,000 lb and MLW of 128,000 lb or an MTOW of 149,000 and an MLW of 130,000 lb. Fuel capacity is 5,840 US gallons (22,100 l), increasing to 6,970 US gallons (26,400 l) with the incorporation of two auxiliary fuel tanks. Typical range with 130 passengers, is 2,370 nautical miles (4,390 km) increasing to 2,900 nautical miles (5,400 km) with two auxiliary fuel tanks.

Cabin: The MD-87 provides typical mixed class seating for 114 passengers or 130 in an all economy layout (five-abreast 31 in and 32 in seat pitch). The maximum seating, exit limited, is for 139 passengers.

MD-87 timeline

  • Announced/go-ahead: January 1985.
  • First flight: December 4, 1986.
  • FAA certification: October 21, 1987.
  • First delivery: November 27, 1987 to Austrian Airlines.[19]
  • Last delivery: March 27, 1992 to Scandinavian Airlines (SAS).


The MD-88 was the last variant of the MD-80 which was launched on January 23, 1986 on the back of orders and options from Delta Air Lines for a total of 80 aircraft.

The MD-88 is, depending on specification, basically similar to the MD-82 or MD-83 except that it incorporates an EFIS cockpit instead of the more traditional analog flight deck of the other MD-80s. Other changes incorporated in the MD-88 include a windshear warning system and general updating of the cabin interior/trim, however these detail changes are relatively minor and were written back as standard on the MD-82/83. In fact the windshear warning, was offered as a standard option on all the other MD-80s and has been made available for retrofitting on earlier aircraft including the DC-9.

Delta's earlier delivered MD-82s were upgraded to MD-88 specification. When McDonnell Douglas was asked why these aircraft were MD-88s and not MD-82s they said that the customer, Delta Air Lines, thought that its specification was sufficiently different to warrant a new designation. Although delivered in December 1987, Delta only put the aircraft into service in January 1988.

Performance: The MD-88 has the same weights, range and airfield performance as the other long body aircraft (MD-82 and MD-83) and is powered by the same engines. MDC quotes a typical range for the MD-88 as 2,050 nautical miles (3,800 km) with 155 passengers. Range with 155 passenger is increased to 2,504 nautical miles (4,637 km) with two additional auxiliary fuel tanks (similar to the MD-83).

MD-88 timeline

  • Announced/go-ahead: January 23, 1986.
  • First flight: August 15, 1987.
  • FAA certification: December 8, 1987.
  • First delivery: December 19, 1987 to Delta Air Lines.
  • Entry into service: January 5, 1988 with Delta Air Lines.
  • Last delivery: June 25, 1997 to Onur Air.

Undeveloped variants

MD-80 Advanced

McDonnell Douglas revealed at the end of 1990 that it was developing an MD-80 improvement package which it intended to begin offering in early 1991 for delivery from mid-1993. The aircraft became known as the MD-80 Advanced. The main improvement involved the installation of Pratt and Whitney JT8D-290 engines which featured a fan 1.5 in greater in diameter and would, it was hoped, allow a 6 dB reduction in exterior noise.

Due to lack of market interest however, McDonnell Douglas dropped its plans to offer the MD-80 Advanced during 1991. However a "mark 2" MD-80 Advanced reappeared during 1993, which did not now feature the modified JT8D-290 engines as previously proposed. The company also evaluated the fitment of winglets on the MD-80. In late 1993 Pratt and Whitney launched a modified version of the JT8D-200 series, the -218B, which was being offered for the DC-9X re-engining program, and is also evaluating the possibility of developing a new JT8D for possible retrofit on the MD-80. The engine would also be offered on new build MD-80s.

The 18,000 lbf (80 kN) to 19,000 lbf (85 kN) thrust -218B engines shares 98% commonality with the existing engine, with changes designed to reduce NOx, improve durability, and bring noise levels to 3 dB. The 218B could be certificated in early to mid-1996. The new engine, dubbed the "8000", was to feature a new fan of increased diameter (by 1.7 in), extended exhaust cone, a larger LP compressor, a new annular burner and a new LP turbine and mixer. The initial thrust rating would be around 21,700 lbf (97 kN) thrust. A launch decision on the new engine was expected in the first half of 1994, but never occurred.

In addition to the engine, which existed only on paper, the MD-80 Advanced was to offer a new flight deck instrumentation package and a completely new passenger compartment design. All would available in retrofit for existing MD-80s and was forecast to be in service by July 1993.

The MD-80 Advanced was to incorporate the advanced flight deck of the MD-88, including a choice of reference systems, with an inertial reference system as standard fitting and optional attitude-heading equipment. It was to be equipped with an electronic flight instrument system (EFIS), an optional second flight management system (FMS), light emitting diode (LED) dot matrix electronic engine and system displays. A Honeywell windshear computer and provision for an optional traffic-alert and collision avoidance system (TCAS) were also to be included. A new interior would have a 12% increase in overhead baggage space and stowage compartment lights that come on when the door opens, as well as new video system featuring drop-down LCD monitors above.[4]

The lack of market interest received for the MD-80 Advanced during 1991 led to McDonnell Douglas dropping its plans for the development.


The MD-90-30 is a stretched variant with updated glass cockpit and two V2500 engines, also Extended Range (ER) version as the MD-90-30ER.

The MD-95 was developed as a replacement for the earlier DC-9-30, produced as the Boeing 717.


In July 2009, there were 886 MD-80 series aircraft in service,[20] and that number dropped to 844 by July 2010. Commercial operators in July 2010 included American Airlines (282), Delta Air Lines (117), Allegiant Air (66), Alitalia (39), SAS (36), Austral Líneas Aéreas (23), Meridiana (17), Khors Air (14), 1Time Airline (12), Bulgarian Air Charter (12), Wings Air (11), and others with fewer aircraft.[21]

Incidents and accidents

As of November 2009, the MD-80 series has been involved in 60 incidents,[22] including 27 hull-loss accidents,[23] with 1,177 fatalities.[24]

Notable accidents and incidents

  • On December 27, 1991, SAS Flight 751, an MD-81, OY-KHO "Dana Viking" crash landed at Gottröra, Sweden. In the initial climb both engines ingested ice broken loose from the wings (which had not been properly de-iced before departure). The ice damaged the compressor blades causing compressor stall. The stall further caused repeated engine surges that finally destroyed both engines, leaving the aircraft with no propulsion. The aircraft landed in a snowy field and broke in three parts. No fire occurred and all aboard survived.
  • On June 1, 1999, American Airlines Flight 1420, an MD-82 attempting to land in severe weather conditions at Little Rock Airport overshot the runway and crashed into the banks of the Arkansas River. Eleven people, including the captain, died.
  • On January 31, 2000, Alaska Airlines Flight 261, an MD-83, crashed in the Pacific Ocean, due to loss of horizontal stabilizer control.[26] All 88 people on board were killed. Following the crash, the acme nut and jackscrew recovered from the aircraft were found to be excessively worn[27] and found to be the cause of the crash due to inadequate maintenance. The FAA ordered airlines to inspect and lubricate the jackscrew more frequently.[28]
  • On October 8, 2001, Scandinavian Airlines Flight 686, an MD-87 (SE-DMA) collided with a small Cessna jet during take-off at Linate Airport, Milan, Italy. The Linate Airport disaster left 118 people dead. The cause of the accident was a misunderstanding between air traffic controllers and the Cessna jet, and the SAS crew had no role in causing the accident. Also the ground movement radar was inoperative at the time of the accident.
  • On November 30, 2004, Lion Air Flight 538, an MD-82 crash landed at Adi Sumarmo Airport in Surakarta and overran the end of the runway. There were 25 fatalities.
  • On March 4, 2006, Lion Air Flight 8987, an MD-82, after landing at Juanda International Airport, applied reverse thrust although the reversers were stated to be out of order. This caused the aircraft to veer to the right and skid off the runway coming to rest 7,000 ft from the approach end of Runway 10. No one was killed, but the aircraft sustained $3 million in damage.[30]
  • Between March 26/27, 2008 and then again between April 8/12, 2008 an FAA safety audit of American Airlines forced the airline to ground its entire fleet of MD-80 series aircraft (approximately 300), to inspect the aircraft's hydraulic wiring. American was forced to cancel nearly 2,500 flights in March and over 3,200 in April.[34] In addition, Delta Air Lines inspected its own MD-80 fleet to ensure its 117 MD-80s were also operating within regulation. This prompted Delta to cancel 275 flights.[35]
  • On August 20, 2008, Spanair Flight 5022, an MD-82 registration EC-HFP from Madrid's Barajas Airport crashed shortly after takeoff on a flight to Las Palmas de Gran Canaria in the Canary Islands. The MD-82 had 162 passengers and ten crew on board, of whom 18 survived. The crash was caused by attempting to take off with the flaps and slats retracted. The flight crew omitted the "set flaps and slats" item in both the After Start checklist and the Takeoff Imminent checklist.[36]
  • On 21 June 2010, Hewa Bora Airways Flight 601, operated by MD-82 9Q-COQ burst a tire on take-off from N'djili Airport, Kinshasa, Democratic Republic of the Congo. Hydraulic systems and port engine were damaged and the nose gear did not lower when the aircraft returned to N'djili. All 110 people on board escaped uninjured. The airline blamed the state of the runway for the accident, but investigators found no fault with the runway.[38]


MD-81 MD-82 /
MD-83 MD-87
Cockpit crew Two
Seating capacity,
172 (1-class)
155 (2 class)
139 (1-class)
130 (2 class)
Length 147 ft 8 in (45.01 m) 130 ft 4 in (39.73 m)
Wingspan 107 ft 8 in (32.82 m)
Wing area 1,209 sq ft (112.3 m2)
Tail height 29 ft 7 in (9.02 m) 30 ft 4 in (9.25 m)
Fuselage width 11 ft (3.35 m)
Cargo capacity 1,253 cu ft (35.5 m3) 1,103 cu ft (31.2 m3) 937 cu ft (26.5 m3)
Empty weight 77,900 lb (35,300 kg) 78,000 lb (35,400 kg) 79,700 lb (36,200 kg) 73,300 lb (33,200 kg)
Maximum take-off weight
140,000 lb (63,500 kg) 149,500 lb (67,800 kg) 160,000 lb (72,600 kg) 140,000 lb (63,500 kg)
Cruising speed Mach 0.76 (504 mph, 811 km/h)
Maximum range,
fully loaded
1,570 nmi (2,910 km; 1,810 mi) 2,050 nmi (3,800 km; 2,360 mi) 2,500 nmi (4,600 km; 2,900 mi) 2,370 nmi (4,390 km; 2,730 mi)
Runway length
5,000 ft (1,500 m) dry, or
5,700 ft (1,700 m) for wet runway
Fuel capacity 5,850 US gal (22,100 L) 5,850 US gal (22,100 L) 7,000 US gal (26,000 L) 5,840 US gal (22,100 L)
Engines (×2) Pratt & Whitney JT8D-200 series
Thrust (×2) 18,500–21,000 lbf (82–93 kN)

Sources: Official MD-80 specifications,[39] MD-80 Airport report[40]

See also

Related development
Aircraft of comparable role, configuration and era

Related lists


  1. ^ a b c Norris, Guy and Wagner, Mark. Douglas Jetliners. MBI Publishing, 1999. ISBN 0-7603-0676-1.
  2. ^ History - Chronology - 1977-1982, The Boeing Company, Retrieved 2007-12-14
  3. ^ a b c d e f g h i j k Airclaims Jet Programs 1995
  4. ^ a b Airliner Color History MD-80 & MD-90. ISBN 0-7603-0698-2
  5. ^ FAA Registry - Aircraft - Make/Model Results - Retrieved 2/2/11
  6. ^ Aviation Week: New-Generation GE Open Rotor and Regional Jet Engine Demo Efforts Planned
  7. ^ MD-80 production list.
  8. ^ Aerospace Notebook: MD-80 era winding down as fuel costs rise,, June 24, 2008.
  9. ^ American Speeds Jet Purchase, Wall Street Journal, August 14, 2008, p. B4
  10. ^ "Midwest Will Cut 110 jobs in Kansas City", Kansas City Business Journal, July 22, 2008, p.10
  11. ^ Midwest Airlines press release July 14, 2008
  12. ^ [1][dead link]
  13. ^ Flight International Commercial Aircraft of the World October 17, 1981
  14. ^ Flight International Commercial Aircraft of the World October 23, 1982
  15. ^ a b c d Flight International Commercial Aircraft of the World October 15, 1983
  16. ^ a b Jane's Civil and Military Aircraft Upgrades 1994-1995
  17. ^ Jane's All the World's Aircraft 1994-1995
  18. ^ Jane's All the World's Aircraft 2004-2005
  19. ^ Airliner List
  20. ^ "World Airliner Census". Flight International, August 18–24, 2009.
  21. ^ "World Airliner Census". Flight International, August 24–30, 2010.
  22. ^ McDonnell Douglas MD-80 incidents., November 19, 2009.
  23. ^ McDonnell Douglas MD-80 Accidents.
  24. ^ McDonnell Douglas MD-80 Accident Statistics.
  25. ^ Wilkerson, Isabel (1987-08-22). "Crash Survivor's Psychic Pain May Be the Hardest to Heal". The New York Times. Retrieved 2006-12-27. 
  26. ^ NTSB Number AAR-02/01 Executive Summary. NTSB, 2002.
  27. ^ NTSB photo of worn jackscrew
  28. ^ FAA Airworthiness Directive 2000-15-15[dead link]
  29. ^ "160 believed dead in Venezuela jet crash". CNN, August 16, 2005.
  30. ^ Lion Air Flight 8987
  31. ^ "Search for clues after Thai crash". BBC, September 17, 2007.
  32. ^ "Survivors recount Thai jet crash". CNN, September 17, 2007.
  33. ^ "Plane crashes; no survivors found". CNN, November 30, 2007.
  34. ^ "Cancellation wave latest problem for airlines". MSNBC, April 10, 2008.
  35. ^ "American, Delta cancel more flights to inspect MD-80 aircraft". ABC News, March 27, 2008.
  36. ^ "Interim Report". [dead link]
  37. ^ "Accident description". Aviation Safety Network. Retrieved 20 November 2009. 
  38. ^ Hradecky, Simon (21 June 2010). "Accident: Hewa Bora MD82 at Kinshasa on Jun 21st 2010, burst tyre on takeoff, hydraulic failure, runway excursion on landing". The Aviation Herald. Retrieved 16 July 2011. 
  39. ^ MD-80 general specifications, Boeing.
  40. ^ MD-80 airport report, McDonnell Douglas, December 1989.
  • Becher, Thomas. Douglas Twinjets, DC-9, MD-80, MD-90 and Boeing 717. The Crowood Press, 2002. ISBN 1-86126-446-1.

External links

Wikimedia Foundation. 2010.

Игры ⚽ Поможем сделать НИР

Look at other dictionaries:

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”