- D-dimer
-
D-dimer is a fibrin degradation product (or FDP), a small protein fragment present in the blood after a blood clot is degraded by fibrinolysis. It is so named because it contains two crosslinked D fragments of the fibrinogen protein.[1]
D-dimer concentration may be determined by a blood test to help diagnose thrombosis. Since its introduction in the 1990s, it has become an important test performed in patients suspected of thrombotic disorders. While a negative result practically rules out thrombosis, a positive result can indicate thrombosis but does not rule out other potential causes. Its main use, therefore, is to exclude thromboembolic disease where the probability is low. In addition, it is used in the diagnosis of the blood disorder disseminated intravascular coagulation.[1]
Contents
Principles
Coagulation, the formation of a blood clot or thrombus, occurs when the proteins of the "coagulation cascade" are activated, either by contact with damaged blood vessel wall (intrinsic pathway) or by activation of factor VII by tissue activating factors. Both pathways lead to the generation of thrombin, an enzyme that turns the soluble blood protein fibrinogen into fibrin, which aggregates into proteofibrils. Another thrombin-generated enzyme, factor XIII, then crosslinks the fibrin proteofibrils at the D fragment site, leading to the formation of an insoluble gel which serves as a scaffold for blood clot formation.[1]
The circulating enzyme plasmin, the main enzyme of fibrinolysis, cleaves the fibrin gel in a number of places. The resultant fragments, "high molecular weight polymers", are digested several times more by plasmin to lead to intermediate and then to small polymers (fibrin degradation products or FDPs). The cross-link between two D fragments remains intact, however, and these are exposed on the surface when the fibrin fragments are sufficiently digested. The typical D-dimer containing fragment contains two D domains and one E domain of the original fibrinogen molecule.[1]
D-dimers are not normally present in human blood plasma, except when the coagulation system has been activated, for instance because of the presence of thrombosis or disseminated intravascular coagulation. The D-dimer assay depends on the binding of a monoclonal antibody to a particular epitope on the D-dimer fragment. Several detection kits are commercially available; all of them rely on a different monoclonal antibody against D-dimer. Of some of these it is known to which area on the D-dimer the antibody binds. The binding of the antibody is then measured quantitatively by one of various laboratory methods.[1]
Indications
D-dimer testing is of clinical use when there is a suspicion of deep venous thrombosis (DVT), pulmonary embolism (PE) or disseminated intravascular coagulation (DIC).[2] It can also rise postoperatively.[2] It is under investigation in the diagnosis of aortic dissection.[3][4]
For DVT and PE, there are various scoring systems that are used to determine the a priori clinical probability of these diseases; the best-known were introduced by Wells et al. (2003).
- For a very high score, or pretest probability, a D-dimer will make little difference and anticoagulant therapy will be initiated regardless of test results, and additional testing for DVT or pulmonary embolism may be performed.
- For a moderate or low score, or pretest probability:[5]
- A negative D-dimer test will virtually rule out thromboembolism: the degree to which the D-dimer reduces the probability of thrombotic disease is dependent on the test properties of the specific test used in the clinical setting: most available D-dimer tests with a negative result will reduce the probability of thromboembolic disease to less than 1% if the pretest probability is less than 15-20%
- If the D-dimer reads high, then further testing (ultrasound of the leg veins or lung scintigraphy or CT scanning) is required to confirm the presence of thrombus. Anticoagulant therapy may be started at this point or withheld until further tests confirm the diagnosis, depending on the clinical situation.
In some hospitals, they are measured by laboratories after a form is completed showing the probability score and only if the probability score is low or intermediate. This would reduce the need for unnecessary tests in those who are high-probability.[6]
Test properties
Various kits have a 93-95% sensitivity and about 50% specificity in the diagnosis of thrombotic disease.[7]
- False positive readings can be due to various causes: liver disease, high rheumatoid factor, inflammation, malignancy, trauma, pregnancy, recent surgery as well as advanced age[citation needed]
- False negative readings can occur if the sample is taken either too early after thrombus formation or if testing is delayed for several days. Additionally, the presence of anti-coagulation can render the test negative because it prevents thrombus extension.
- Likelihood ratios are derived from sensitivity and specificity to adjust pretest probability.
History
D-dimer was originally described in the 1970s, and found its diagnostic application in the 1990s.[1]
References
- ^ a b c d e f Adam SS, Key NS, Greenberg CS (March 2009). "D-dimer antigen: current concepts and future prospects". Blood 113 (13): 2878–2887. doi:10.1182/blood-2008-06-165845. PMID 19008457. http://bloodjournal.hematologylibrary.org/cgi/content/full/113/13/2878.
- ^ a b General Practice Notebook > D-dimer Retrieved September 2011
- ^ Suzuki, T.; Distante, A.; Eagle, K. (2010). "Biomarker-assisted diagnosis of acute aortic dissection: How far we have come and what to expect". Current Opinion in Cardiology 25 (6): 541–545. doi:10.1097/HCO.0b013e32833e6e13. PMID 20717014.
- ^ Ranasinghe, A. M.; Bonser, R. S. (2010). "Biomarkers in Acute Aortic Dissection and Other Aortic Syndromes". Journal of the American College of Cardiology 56 (19): 1535–1541. doi:10.1016/j.jacc.2010.01.076. PMID 21029872.
- ^ Wells PS, Anderson DR, Rodger M et al. (2003). "Evaluation of D-dimer in the diagnosis of suspected deep-vein thrombosis". N. Engl. J. Med. 349 (13): 1227–1235. doi:10.1056/NEJMoa023153. PMID 14507948. http://content.nejm.org/cgi/content/full/349/13/1227.
- ^ Rathbun, SW; TL Whitsett, SK Vesely, GE Raskob (2004). "Clinical utility of D-dimer in patients with suspected pulmonary embolism and nondiagnostic lung scans or negative CT findings". Chest 125 (3): 851–855. doi:10.1378/chest.125.3.851. PMC 1215466. PMID 15006941. http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=1215466.
- ^ Schrecengost JE, LeGallo RD, Boyd JC et al. (September 2003). "Comparison of diagnostic accuracies in outpatients and hospitalized patients of D-dimer testing for the evaluation of suspected pulmonary embolism". Clinical Chemistry 49 (9): 1483–1490. doi:10.1373/49.9.1483. PMID 12928229.
MEP CBC (Platelet count) · Mean platelet volume · vWF: Ristocetin induced platelet agglutination
clotting factors: Prothrombin time · Partial thromboplastin time · Thrombin time
other/general coagulation: Bleeding time · animal enzyme (Reptilase time, Ecarin clotting time, Dilute Russell's viper venom time) · Thromboelastography
fibrinolysis: Euglobulin lysis time · D-dimerRed blood cell indices
(erythrocytes)CFU-GM Other Categories:- Chemical pathology
- Fibrinolytic system
- Blood tests
Wikimedia Foundation. 2010.