- Kleihauer-Betke test
The Kleihauer-Betke ("KB") test, Kleihauer-Betke ("KB") stain or Kleihauer test, is a
blood test used to measure the amount offetal hemoglobin transferred from afetus to a mother'sbloodstream cite journal
author=Katiyar R, Kriplani A, Agarwal N, Bhatla N, Kabra M
title=Detection of fetomaternal hemorrhage following chorionic villus sampling by Kleihauer Betke test and rise in maternal serum alpha feto protein
journal=Prenat. Diagn.
volume=27
issue=2
pages=139–42
year=2007
pmid=17191260
doi=10.1002/pd.1632
accessdate=2007-08-17] . It is usually performed on Rhesus-negative mothers to determine the required dose ofRho(D) immune globulin (RhIg) to inhibit formation of Rh antibodies in the mother and preventRh disease in future Rh-positive children.Details of the test
The KB test is the standard method of detecting
fetal-maternal hemorrhage (FMH). It takes advantage of the differential resistance of fetal hemoglobin toacid . A standardblood smear is prepared from the mother'sblood , and exposed to an acid bath. This removes adulthemoglobin , but not fetal hemoglobin, from the red blood cells. Subsequent staining makes fetal cells (containing fetal hemoglobin) appear rose-pink in color, while adult red blood cells are only seen as 'ghosts'. A large number of cells (over 5000) are counted under themicroscope and aratio of fetal to maternal cells generated.In those with positive tests, follow up testing at a
postpartum check should be done to rule out the possibility of afalse positive . This could be caused by a process in the mother which causes persistent elevation of fetal hemoglobin, e.g.sickle cell trait .Comparison with other more expensive or technologically advanced methods such as
flow cytometry has shown that the KB stain, like the more advanced methods, is sensitive in its detection of FMH. Background counting errors can result inestimate s of as much as 5 ml fetalblood loss when there actually is no such blood loss, but standard methods available in most laboratories admit an extremely low probability of the return of a false positive when more severe FMH has taken place.Estimating the Severity of FMH
To determine if a positive test for FMH should be considered as the likely cause of fetal
death , thepercent of total fetal blood volume lost should be calculated, making appropriate adjustments based on the following known relationships:
** the size of a fetal red blood cell is 1.22 times that of an adult red blood cell;
** the KB stain is known to have amean success rate of 92% in detecting fetal red blood cells;
** in a woman at or near term in her pregnancy, the mean volume of maternal red blood cells is approximately 1800 ml;
** the mean fetalhematocrit is 50%; and
** atstillbirth , the mean fetal blood volume is Theseconstraint s can then be applied to yield theformula where
** is thepercent age of fetal blood lost;
** is the observed number of fetal red blood cells;
** is the observed number of maternal red blood cells (N.B. we have that , where is the total observed number of red blood cells, both maternal and fetal);
** is the stillbirth weight of the fetus inkilograms .An Example of How This Formula is Used in Resolving a Stillbirth
Suppose that a KB stain is performed and total red blood cells are observed, of which are found to be fetal red blood cells. Suppose further that the stillbirth weight of the fetus under consideration is . Then we would conclude that the total percentage of fetal blood lost is approximately
to five
significant digits . We would hence conclude that the fetus under consideration lost 66.667% (two thirds) of its blood via FMH. Generally, stillbirth is highly probable for any value of , particularly if the fetus abruptly loses this much blood; in this example, we would hence be likely to suspect FMH as the cause of the stillbirth. It is important to note, however, that such adiagnosis is still not completely conclusive; fetuses losing large quantities of blood over long periods of time are able to compensate for this slower blood loss; since the KB stain tells us nothing with regard to the level of acuity of FMH. This means that it is not possible to entirelycorrelate a positive KB stain and high with a stillbirth, though in many cases, such as the stillbirth ofBreanna Lynn Bartlett-Stewart in2000 , given other information, such as knownhereditary complications ofpregnancy , extremely high positivecorrelation coefficient s between FMH and stillbirth have been observed.Problems in the Detection of Fetal Red Blood Cells
Since fetal and maternal
blood cell s have the samelife expectancy in the maternalbloodstream , it is possible to obtain informative results from a KB stain for a fair period of time after a stillbirth. However, if the mother and fetus are ABO incompatible, it is more crucial to quickly perform the KB stain following a stillbirth, as the fetal red blood cells will be eliminated from the maternal bloodstream very quickly, causing the KB stain to underestimate the degree of FMH, if any.Lots of concern has been raised in the literature concerning false positives when sampling is done after delivery. In general this is not a problem. Delivery does result in higher frequency of detection of micro-hemorrhages but this should not confound interpretation of FMH as a possible cause of stillbirth. It is not necessary to draw the sample before induction, onset of labor, delivery, placental delivery etc. despite what some published literature purports. However, if caesarean section is to be used, failure to draw the sample prior to that will result in a 2% false positive rate.
Finally, anything which causes persistence of fetal hemoglobin in maternal blood cells will make interpretation much trickier. Certain hemoglobinopathies, the most common of which is sickle cell trait, do this. Overall, somewhere around 1-3% of the time this could result in false interpretation.
See also
*
Apt test References
Wikimedia Foundation. 2010.