- Medical research
-
Biomedical research (or experimental medicine), in general simply known as medical research, is the basic research, applied research, or translational research conducted to aid and support the body of knowledge in the field of medicine. Medical research can be divided into two general categories: the evaluation of new treatments for both safety and efficacy in what are termed clinical trials, and all other research that contributes to the development of new treatments. The latter is termed preclinical research if its goal is specifically to elaborate knowledge for the development of new therapeutic strategies. A new paradigm to biomedical research is being termed translational research, which focuses on iterative feedback loops between the basic and clinical research domains to accelerate knowledge translation from the bedside to the bench, and back again. Medical research may involve doing research on public health, biochemistry, clinical research, microbiology, physiology, oncology, surgery and research on many other non-communicable diseases such as diabetes and cardiovascular diseases.
The increased longevity of humans over the past century can be significantly attributed to advances resulting from medical research. Among the major benefits have been vaccines for measles and polio, insulin treatment for diabetes, classes of antibiotics for treating a host of maladies, medication for high blood pressure, improved treatments for AIDS, statins and other treatments for atherosclerosis, new surgical techniques such as microsurgery, and increasingly successful treatments for cancer. New, beneficial tests and treatments are expected as a result of the Human Genome Project. Many challenges remain, however, including the appearance of antibiotic resistance and the obesity epidemic.
Most of the research in the field is pursued by biomedical scientists, however significant contributions are made by other biologists, as well as chemists and physicists.
Contents
Preclinical research
Preclinical research is research in basic science, which precedes the clinical trials, and is almost purely based on theory and animal experiments. Much of these experiments involve preclinical imaging modalities to aid in vivo, longitudinal studies.
New treatments come about as a result of other, earlier discoveries — often unconnected to each other, and in various fields. Sometimes the research is done for non-medical purposes, and only by accident contributes to the field of medicine (for example, the discovery of penicillin). Clinicians use these discoveries to create a treatment regimen, which is then tested in clinical trials.
Clinical trials
Main article: Clinical trialA clinical trial is a comparison test of a medication or other medical treatment, versus a placebo, other medications and devices, or the standard medical treatment for a patient's condition. Clinical trials vary greatly in size: from a single researcher in one hospital or clinic to an international multicenter trial with several hundred participating researchers on several continents. The number of patients tested can range from as few as a dozen to several thousands.
Every new drug formulation used in a clinical trial has to first undergo rigorous tests in a laboratory. Once the results from those tests confirm that the formulation is safe to be taken by humans, the drug is given to healthy volunteers in what are called Phase I clinical trials.[1]
Funding
Main article: Research fundingResearch funding in many countries comes from research bodies which distribute money for equipment and salaries. In the United Kingdom, funding bodies such as the Medical Research Council derive their assets from UK tax payers, and distribute this to institutions in a competitive manner. The Wellcome Trust is the UK's largest non-governmental source of funds for biomedical research and provides over £600 million per year in grants to scientists and funds for research centres.[2]
In the United States, the most recent data from 2003[3] suggest that about 94 billion dollars were provided for biomedical research in the United States. The National Institutes of Health and pharmaceutical companies collectively contribute 26.4 billion dollars and 27.0 billion dollars, respectively, which constitute 28% and 29% of the total, respectively. Other significant contributors include biotechnology companies (17.9 billion dollars, 19% of total), medical device companies (9.2 billion dollars, 10% of total), other federal sources, and state and local governments. Foundations and charities, led by the Bill and Melinda Gates Foundation, contributed about 3% of the funding.
In Australia, in 2000/01 (the most recent data available), about $1.7B was spent on biomedical research [4], with just under half ($800M, 47%) sourced from the Commonwealth government (all sources). About $540M came from business investments/funding and a further $220M from private or not-for-profit organisations (totalling 44%). The balance was from state and local governments. Since then there has been a significant in government funding through the National Health and Medical Research Council (NHMRC), whose expenditure on research was nearly $AUD700 million in 2008-09.[5]
The enactment of orphan drug legislation in some countries has increased funding available to develop drugs meant to treat rare conditions, resulting in breakthroughs that previously were uneconomical to pursue.
Regulations and guidelines
Medical research is highly regulated. National regulatory authorities oversee and monitor medical research, such as for the development of new drugs. In the USA the Food and Drug Administration oversees new drug development, in Europe the European Medicines Agency (see also EudraLex), and in Japan the Ministry of Health, Labour and Welfare (Japan). The World Medical Association develops the ethical standards for the medical profession, involved in medical research. The International Conference on Harmonisation of Technical Requirements for Registration of Pharmaceuticals for Human Use (ICH) works on the creation of rules and guidelines for the development of new medication, such as the guidelines for Good Clinical Practice (GCP). All ideas of regulation are based on a country's ethical standards code. This is why treatment of a particular disease in one country may not be allowed, but is in another.
Conflicts of interest
In 2001, the editors of 12 major journals issued a joint editorial, published in each journal, on the control over clinical trials exerted by sponsors, particularly targeting the use of contracts which allow sponsors to review the studies prior to publication and withhold publication. They strengthened editorial restrictions to counter the effect. The editorial noted that contract research organizations had, by 2000, received 60% of the grants from pharmaceutical companies. In the U.S. researchers may be restricted from contributing to the trial design, accessing the raw data, and interpreting the results.[6]
Fields of research
Fields of biomedical research include:
- Cellular biology
- Molecular biology
- Pharmacology
- Neuroscience
- Genetics
- Virology
See also
- Biomedicine
- Animal testing
- Preclinical imaging
- Human experimentation
- Medical research scientist
- Title 21 of the Code of Federal Regulations (USA)
- Biomedical scientist
- Biomedical informatics
- Biomedical technology
- Translational Research
- Pharmaceutical company
- Animals
- Medical Scientist Training Program
References
Notes
- ^ The Importance of Clinical Trials in the Development of New Medicines
- ^ "Henry Wellcome: from backwoods boy to medicine man". The Guardian. 9 January 2011. http://www.guardian.co.uk/science/2011/jan/09/henry-wellcome-collection-medicine-man. Retrieved 12 June 2011.
- ^ Moses H, Dorsey E, Matheson D, Thier S (2005). "Financial anatomy of biomedical research.". JAMA 294 (11): 1333–42. doi:10.1001/jama.294.11.1333. PMID 16174691.
- ^ Investment Review of Health and Medical Research (Grant Review) (2004). Sustaining the Virtuous Cycle For a Healthy, Competitive Australia. Department of Health and Ageing.
- ^ NHMRC Annual Report 2008-09, 2009, http://www.nhmrc.gov.au/publications/synopses/nh126syn.htm
- ^ Davidoff F, DeAngelis CD, Drazen JM, et al (September 2001). "Sponsorship, authorship and accountability". CMAJ 165 (6): 786–8. PMC 81460. PMID 11584570. http://www.cmaj.ca/cgi/pmidlookup?view=long&pmid=11584570.
Bibliography
- Indrayan A (2004). "Elements of medical research.". Indian J Med Res 119 (3): 93–100. PMID 15115159.
- Highleyman L (2006). "A guide to clinical trials. Part II: interpreting medical research.". BETA 18 (2): 41–7. PMID 16610119.Full text
- Beyleveld D & Pattinson S D (2006). "Medical Research into Emergency Treatment: Regulatory Tensions in England and Wales.". Web JCLI 5. full text
External links
- Johns Hopkins Biomedical Research & Discovery
- SciClyc An Open-access database to shared antibodies, cell cultures, and documents for biomedical research.
- Biomedical Research, a peer reviewed international research journal of Basic and Clinical Medical Sciences published quarterly by Scientifics of India
Biomedical research: Clinical study design / Design of experiments Overview Controlled study
(EBM I to II-1; A to B)Observational study
(EBM II-2 to II-3; B to C)Epidemiology/
methodsoccurrence: Incidence (Cumulative incidence) · Prevalence (Point prevalence, Period prevalence)
association: absolute (Absolute risk reduction, Attributable risk, Attributable risk percent) · relative (Relative risk, Odds ratio, Hazard ratio)
other: Virulence · Infectivity · Mortality rate · Morbidity · Case fatality · Specificity and sensitivity · Likelihood-ratios · Pre/post-test probabilityTrial/test types Analysis of clinical trials Risk–benefit analysis
Interpretation of results Category · Glossary · List of topics Categories:- Medical research
- Health research
- Health sciences
Wikimedia Foundation. 2010.