Zu Chongzhi

Zu Chongzhi
Statue of Zu Chongzi in Ting Ling Park in Kunshan

Zu Chongzhi (simplified Chinese: 祖冲之; traditional Chinese: 祖沖之; pinyin: Zǔ Chōngzhī; Wade–Giles: Tsu Ch'ung-chih) (429–500), courtesy name Wenyuan (文遠), was a prominent Chinese mathematician and astronomer during the Liu Song and Southern Qi Dynasties.

Contents

Life and works

Chongzhi's ancestry was from modern Baoding, Hebei. To flee from the ravage of war, Zu's grandfather Zu Chang moved to the Yangtze, as part of the massive population movement during the Eastern Jin. Zu Chang (祖昌) at one point held the position of "Minister of Great Works" ) within the Liu Song and was in charge of government construction projects. Zu's father, Zu Shuo (祖朔) also served the court and was greatly respected for his erudition.

Zu was born in Jiankang. His family had historically been involved in astronomy research, and from childhood Zu was exposed to both astronomy and mathematics. When he was only a youth his talent earned him much repute. When Emperor Xiaowu of Liu Song heard of him, he was sent to an Academy, the Hualin Xuesheng (華林學省), and later at the Imperial Nanjing University (Zongmingguan) to perform research. In 461 in Nanxu (today Zhenjiang, Jiangsu), he was engaged in work at the office of the local governor.

Zhui Shu

Zu Chongzhi, along with his son Zu Gengzhi, wrote a mathematical text entitled Zhui Shu (Method of Interpolation). There is a high possibility of astronomical calculation techniques due to the accuracy of his calendars. It is said that the treatise contains formulas for the volume of the sphere, cubic equations and the accurate value of pi. Sadly, this book didn't survive to the present day, since it has been lost since the Song Dynasty.

His mathematical achievements included:

  • the Daming calendar (大明曆) introduced by him in 465.
  • distinguishing the Sidereal Year and the Tropical Year, and he measured 45 years and 11 months per degree between those two, and today we know the difference is 70.7 years per degree.
  • calculating one year as 365.24281481 days, which is very close to 365.24219878 days as we know today.
  • calculating the number of overlaps between sun and moon as 27.21223, which is very close to 27.21222 as we know today; using this number he successfully predicted an eclipse four times during 23 years (from 436 to 459).
  • calculating the Jupiter year as about 11.858 Earth years, which is very close to 11.862 as we know of today.
  • deriving two approximations of pi, which held as the most accurate approximation for π for over nine hundred years. His best approximation was between 3.1415926 and 3.1415927, with 355113 (密率, Milü, detailed approximation) and 227 (約率, Yuelü, rough approximation) being the other notable approximations. He obtained the result by approximating a circle with a 12,288 (= 212 × 3) sided polygon. This was an impressive feat for the time, especially considering that the device Counting rods he used for recording intermediate results were merely a pile of wooden sticks laid out in certain patterns. Japanese mathematician Yoshio Mikami pointed out, "\tfrac{22}{7} was nothing more than the π value obtained several hundred years earlier by the Greek mathematician Archimedes, however Milu \pi=\tfrac{355}{113} could not be found in any Greek, Indian or Arabian manuscripts, not until 1585 Dutch mathematician Adriaan Anthoniszoom obtained this fraction; the Chinese possessed this most extraordinary fraction over a whole millennium earlier than Europe". Hence Mikami strongly urged that the fraction \tfrac{355}{113} be named after Zu Chongzhi as Zu Chongzhi fraction.[1] In Chinese literature, this fraction is known as "Zu rate". Zu rate is a best rational approximation to π, and is the closest rational approximation to π from all fractions with denominator less than 16600.[2]
  • finding the volume of a sphere as πD3/6 where D is diameter (equivalent to 4πr3/3).

Astronomy

Zu was an accomplished astronomer who calculated the values of time with unprecedented precision. His methods of interpolating and the usage of integration is far ahead of his time. Even the astronomer Yi Xing's isn't comparable to his value (who was beginning to utilize foreign knowledge). The Sung dynasty calendar was backwards to the "Northern barbarians" because they were implementing their daily lives with the Da Ming Li. It is said that his methods of calculation were so advanced, the scholars of the Sung dynasty and Indo influence astronomers of the Tang dynasty found it confusing.

Mathematics

The majority of Zu's great mathematical works are recorded in his lost text the Zhui Shu. Most scholars argue about his complexity since traditionally the Chinese had developed mathematics as algebraic and equational. Logically, scholars assume that the Zhui Shu yields methods of cubic equations. His works on the accurate value of pi describe the lengthy calculations involved. Zu used the method of exhaustion discovered and described 700 years earlier by Archimedes to inscribe a 12,288-gon. Zu's value of pi is precise to six decimal places and for a thousand years thereafter no subsequent mathematician computed a value this precise. Zu also worked on deducing the formula for the volume of a sphere.

The South Pointing Chariot

The South Pointing Chariot device was first invented by the Chinese mechanical engineer Ma Jun (c. 200-265 AD). It was a wheeled vehicle that incorporated an early use of differential gears to operate a fixed figurine that would constantly point south, hence enabling one to accurately measure their directional bearings. This effect was achieved not by magnetics (like in a compass), but through intricate mechanics, the same design that allows equal amounts of torque applied to wheels rotating at different speeds for the modern automobile. After the Three Kingdoms period, the device fell out of use temporarily. However, it was Zu Chongzhi who successfully re-invented it in 478 AD, as described in the texts of the Song Shu (c. 500 AD) and the Nan Chi Shu, with a passage from the latter below:

When Emperor Wu of Liu Song subdued Guanzhong he obtained the south-pointing carriage of Yao Xing, but it was only the shell with no machinery inside. Whenever it moved it had to have a man inside to turn (the figure). In the Sheng-Ming reign period, Gao Di commissioned Zi Zu Chongzhi to reconstruct it according to the ancient rules. He accordingly made new machinery of bronze, which would turn round about without a hitch and indicate the direction with uniformity. Since Ma Jun's time such a thing had not been.[3]

Named for him

Notes

  1. ^ Yoshio Mikami (1913). Development of Mathematics in China and Japan. B. G. Teubner. p. 50. http://books.google.com/?id=4e9LAAAAMAAJ&q=intitle:Development+intitle:%22China+and+Japan%22+355&dq=intitle:Development+intitle:%22China+and+Japan%22+355. 
  2. ^ The next "best rational approximation" to π is \frac{52163}{16604}=3.1415923874 .
  3. ^ Needham, Volume 4, Part 2, 289.

References

  • Needham, Joseph (1986). Science and Civilization in China: Volume 4, Part 2. Cambridge University Press
  • Du, Shiran and He, Shaogeng, "Zu Chongzhi". Encyclopedia of China (Mathematics Edition), 1st ed.

Further reading

  • Needham, Joseph (1986). Science and Civilization in China: Volume 3, Mathematics and the Sciences of the Heavens and the Earth. Cambridge University Press

External links


Wikimedia Foundation. 2010.

Игры ⚽ Нужно решить контрольную?

Look at other dictionaries:

  • Zu Chongzhi — (chinesisch 祖沖之 / 祖冲之 Zǔ Chōngzhī, W. G. TsuCh ung chih; * 429; † 500) war ein chinesischer Mathematiker und Astronom zur Zeit der Liu Song und Südlichen Qi Dynastie. Inhaltsverzeichnis 1 Leben und Arbeit …   Deutsch Wikipedia

  • Zu Chongzhi — Dans ce nom asiatique, le nom de famille, Zǔ, précède le prénom. Zu Chongzhi (祖冲之, hanyu pinyin Zǔ Chōngzhī, EFEO Tsou Tch ong tche) (429 500) est un mathématicien chinois et astronome pendant les dynasties Song du sud et dynastie Qi du Sud (des… …   Wikipédia en Français

  • Zu Chongzhi — Este es un nombre chino; el apellido es Zu Zu Chongzhi (祖冲之, pinyin Zǔ Chōngzhī, Wade Giles Tsu Ch ung chih) (429 500) fue un matemático chino y astrónomo que vivió y estuvo al servicio de Liu Song y de las dinastías de Qi (de las Dinastías del… …   Wikipedia Español

  • Zu Chongzhi — born 429, Jiankang, China died 500, China Chinese astronomer, mathematician, and engineer. About 462 he proposed a new calendar system that would provide a more precise number of lunations per year and take into consideration the precession of… …   Universalium

  • Chao Chongzhi — (晁冲之) was a Song Chinese poet. His cousins Chao Buzhi, Chao Shuozhi, Chao Yongzhi were all famous litterateur at that time. Chao had studied with Chen Shidao in the year one. He was a close friend of Lü Benzhong. His son Chao Gongwu was the… …   Wikipedia

  • Zu Chong-Zhi (Mathematiker) — Zu Chong Zhi (429–500) chin. 祖沖之 / 祖冲之, Zǔ Chōngzhī, W. G. TsuCh ung chih war ein chinesischer Mathematiker und Astronom zur Zeit der Liu Song und Südlichen Qi Dynastie. Inhaltsverzeichnis 1 Leben und Arbeit 2 Astronomie …   Deutsch Wikipedia

  • Liu Hui's π algorithm — is a mathematical algorithm invented by Liu Hui (fl. 3rd century), a mathematician of Wei Kingdom. Before his time, the ratio of the circumference of a circle to diameter was often taken experimentally as 3 in China, while Zhang Heng (78… …   Wikipedia

  • Southern and Northern Dynasties — This article is about the Southern and Northern Dynasties in China. For the same name period in other countries, see Nanboku chō for Japan and Southern and Northern Dynasties of Vietnam. Southern and Northern Dynasties Southern Dynasties Country… …   Wikipedia

  • Chinese mathematics — Mathematics in China emerged independently by the 11th century BC.[1] The Chinese independently developed very large and negative numbers, decimals, a place value decimal system, a binary system, algebra, geometry, and trigonometry. Many[who?]… …   Wikipedia

  • Número π — π (pi) es la relación entre la longitud de una circunferencia y su diámetro, en geometría euclidiana. Es un número irracional y una de las constantes matemáticas más importantes. Se emplea frecuentemente en matemáticas, física e ingeniería. El… …   Wikipedia Español

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”