List of formulae involving π

List of formulae involving π

The following is a list of significant formulae involving the mathematical constant π. The list contains only formulae whose significance is established either in the article on the formula itself, or in the articles on π or Computing π.

Classical geometry

:C = 2 pi r = pi d,,

where "C" is the circumference of a circle, "r" is the radius and "d" is the diameter.

:A = pi r^2,,

where "A" is the area of a circle and "r" is the radius.

:V = {4 over 3}pi r^3,

where "V" is the volume of a sphere and "r" is the radius.

:A = 4pi r^2,

where "A" is the surface area of a sphere and "r" is the radius.

Analysis

Integrals

:int_{-1}^1 sqrt{1-x^2},dx = frac{pi}{2} (see π)

:int_{-1}^1frac{dx}{sqrt{1-x^2 = pi (see π)

:int_{-infty}^inftyfrac{dx}{1+x^2} = pi (integral form of arctan over its entire domain, giving the period of tan).

:int_{-infty}^{infty} e^{-x^2},dx = sqrt{pi} (see also normal distribution).

:ointfrac{dz}{z}=2pi i (when the path of integration winds once counterclockwise around 0. See also Cauchy's integral formula)

:int_0^inftyfrac{sin(x)}{x},dx=frac{pi}{2}.

:int_0^1 {x^4(1-x)^4 over 1+x^2},dx = {22 over 7} - pi (see also proof that 22 over 7 exceeds π).

Efficient infinite series

:sum_{k=0}^inftyfrac{k!}{(2k+1)!!}=frac{pi}{2} (see also double factorial)

:12 sum^infty_{k=0} frac{(-1)^k (6k)! (13591409 + 545140134k)}{(3k)!(k!)^3 640320^{3k + 3/2=frac{1}{pi} (see Chudnovsky brothers)

:frac{2sqrt{2{9801} sum^infty_{k=0} frac{(4k)!(1103+26390k)}{(k!)^4 396^{4k=frac{1}{pi} (see Srinivasa Ramanujan)

The following are good for calculating arbitrary binary digits of π::sum_{k = 0}^{infty} frac{1}{16^k} left( frac{4}{8k + 1} - frac{2}{8k + 4} - frac{1}{8k + 5} - frac{1}{8k + 6} ight)=pi (see Bailey-Borwein-Plouffe formula)

:frac{1}{2^6} sum_{n=0}^{infty} frac(-1)}^n}{2^{10n left( - frac{2^5}{4n+1} - frac{1}{4n+3} + frac{2^8}{10n+1} - frac{2^6}{10n+3} - frac{2^2}{10n+5} - frac{2^2}{10n+7} + frac{1}{10n+9} ight)=pi

Other infinite series

:sum_{n=0}^{infty} frac{(-1)^{n{2n+1} = frac{1}{1} - frac{1}{3} + frac{1}{5} - frac{1}{7} + frac{1}{9} - cdots = arctan{1} = frac{pi}{4} (see Leibniz formula for pi)

:zeta(2) = frac{1}{1^2} + frac{1}{2^2} + frac{1}{3^2} + frac{1}{4^2} + cdots = frac{pi^2}{6} (see also Basel problem and zeta function)

:zeta(4)= frac{1}{1^4} + frac{1}{2^4} + frac{1}{3^4} + frac{1}{4^4} + cdots = frac{pi^4}{90}

:zeta(2n)= frac{1}{1^{2n + frac{1}{2^{2n + frac{1}{3^{2n + frac{1}{4^{2n + cdots = (-1)^{n+1}frac{B_{2n}(2pi)^{2n{2(2n)!}

:sum_{n=0}^{infty} frac{1}{(2n+1)^2} = frac{1}{1^2} + frac{1}{3^2} + frac{1}{5^2} + frac{1}{7^2} + cdots = frac{pi^2}{8}

:sum_{n=0}^{infty} frac{(-1)^n}{(2n+1)^3} = frac{1}{1^3} - frac{1}{3^3} + frac{1}{5^3} - frac{1}{7^3} + cdots = frac{pi^3}{32}

Machin-like formulae

See also Machin-like formula.: frac{pi}{4} = 4 arctanfrac{1}{5} - arctanfrac{1}{239} (the original Machin's formula)

:frac{pi}{4} = arctanfrac{1}{2} + arctanfrac{1}{3}

:frac{pi}{4} = 2 arctanfrac{1}{2} - arctanfrac{1}{7}

:frac{pi}{4} = 2 arctanfrac{1}{3} + arctanfrac{1}{7}

:frac{pi}{4} = 5 arctanfrac{1}{7} + 2 arctanfrac{3}{79}

:frac{pi}{4} = 12 arctanfrac{1}{49} + 32 arctanfrac{1}{57} - 5 arctanfrac{1}{239} + 12 arctanfrac{1}{110443}

:frac{pi}{4} = 44 arctanfrac{1}{57} + 7 arctanfrac{1}{239} - 12 arctanfrac{1}{682} + 24 arctanfrac{1}{12943}

Infinite products

: prod_{n=1}^{infty} frac{4n^2}{4n^2-1} = frac{2}{1} cdot frac{2}{3} cdot frac{4}{3} cdot frac{4}{5} cdot frac{6}{5} cdot frac{6}{7} cdot frac{8}{7} cdot frac{8}{9} cdots = frac{pi}{2} (see also Wallis product)

Vieta's formula:

:frac{sqrt2}2 cdot frac{sqrt{2+sqrt22 cdot frac{sqrt{2+sqrt{2+sqrt2}2 cdot cdots = frac2pi

Three continued fractions

:3+pi= {6 + cfrac{1^2}{6 + cfrac{3^2}{6 + cfrac{5^2}{6 + cfrac{7^2}{ddots,}

:frac{4}{pi} = {1 + cfrac{1^2}{3 + cfrac{2^2}{5 + cfrac{3^2}{7 + cfrac{4^2}{ddots}

:pi = cfrac{4}{1 + cfrac{1}{2 + cfrac{9}{2 + cfrac{25}{2 + cfrac{49}{ddots},

For more on this third identity, see Euler's continued fraction formula.

(See also continued fraction and generalized continued fraction.)

Miscellaneous

:n! sim sqrt{2 pi n} left(frac{n}{e} ight)^n (Stirling's approximation)

:e^{i pi} + 1 = 0; (Euler's identity)

:sum_{k=1}^{n} varphi (k) sim frac{3n^2}{pi^2} (see Euler's totient function)

:sum_{k=1}^{n} frac {varphi (k)} {k} sim frac{6n}{pi^2} (see Euler's totient function)

:Gammaleft({1 over 2} ight)=sqrt{pi} (see also gamma function)

:pi = frac{Gammaleft({1/4} ight)^{4/3} mathrm{agm}(1, sqrt{2})^{2/3{2} (where agm is the arithmetic-geometric mean)

Physics

*The cosmological constant:::Lambda = 8pi G} over {3c^2 ho
*Heisenberg's uncertainty principle::: Delta x, Delta p ge frac{h}{4pi}
*Einstein's field equation of general relativity::: R_{ik} - {g_{ik} R over 2} + Lambda g_{ik} = {8 pi G over c^4} T_{ik}
*Coulomb's law for the electric force::: F = frac{left|q_1q_2 ight{4 pi varepsilon_0 r^2}
*Magnetic permeability of free space::: mu_0 = 4 pi cdot 10^{-7},mathrm{N/A^2},

References

* Peter Borwein, " [http://www.cecm.sfu.ca/personal/pborwein/PAPERS/P159.pdf The Amazing Number Pi] "

ee also

* Pi
* Computing π
* List of topics related to π


Wikimedia Foundation. 2010.

Игры ⚽ Нужно сделать НИР?

Look at other dictionaries:

  • List of topics related to π — Part of a series of articles on the mathematical constant π …   Wikipedia

  • List of mathematics articles (L) — NOTOC L L (complexity) L BFGS L² cohomology L function L game L notation L system L theory L Analyse des Infiniment Petits pour l Intelligence des Lignes Courbes L Hôpital s rule L(R) La Géométrie Labeled graph Labelled enumeration theorem Lack… …   Wikipedia

  • List of trigonometric identities — Cosines and sines around the unit circle …   Wikipedia

  • List of abstract algebra topics — Abstract algebra is the subject area of mathematics that studies algebraic structures, such as groups, rings, fields, modules, vector spaces, and algebras. The phrase abstract algebra was coined at the turn of the 20th century to distinguish this …   Wikipedia

  • List of Chinese inventions — A bronze Chinese crossbow mechanism with a buttplate (the wooden components have …   Wikipedia

  • List of patent claim types — This is a list of special types of claims that may be found in a patent or patent application. For explanations about independent and dependent claims and about the different categories of claims, i.e. product or apparatus claims (claims… …   Wikipedia

  • Pi — This article is about the number. For the Greek letter, see Pi (letter). For other uses, see Pi (disambiguation). The circumference of a ci …   Wikipedia

  • Approximations of π — Timeline of approximations for pi …   Wikipedia

  • Lists of mathematics topics — This article itemizes the various lists of mathematics topics. Some of these lists link to hundreds of articles; some link only to a few. The extremely long list of mathematics articles contains all mathematical articles in alphabetical order.… …   Wikipedia

  • Numerical approximations of π — This page is about the history of numerical approximations of the mathematical constant pi;. There is a summarizing table at chronology of computation of pi;. See also history of pi; for other aspects of the evolution of our knowledge about… …   Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”