- List of formulae involving π
The following is a list of significant formulae involving the
mathematical constant π. The list contains only formulae whose significance is established either in the article on the formula itself, or in the articles on π orComputing π .Classical geometry
:C = 2 pi r = pi d,,
where "C" is the circumference of a
circle , "r" is the radius and "d" is the diameter.:A = pi r^2,,
where "A" is the area of a circle and "r" is the radius.
:V = {4 over 3}pi r^3,
where "V" is the volume of a
sphere and "r" is the radius.:A = 4pi r^2,
where "A" is the surface area of a sphere and "r" is the radius.
Analysis
Integrals
:int_{-1}^1 sqrt{1-x^2},dx = frac{pi}{2} (see π)
:int_{-1}^1frac{dx}{sqrt{1-x^2 = pi (see π)
:int_{-infty}^inftyfrac{dx}{1+x^2} = pi (integral form of
arctan over its entire domain, giving the period of tan).:int_{-infty}^{infty} e^{-x^2},dx = sqrt{pi} (see also
normal distribution ).:ointfrac{dz}{z}=2pi i (when the path of integration winds once counterclockwise around 0. See also
Cauchy's integral formula ):int_0^inftyfrac{sin(x)}{x},dx=frac{pi}{2}.
:int_0^1 {x^4(1-x)^4 over 1+x^2},dx = {22 over 7} - pi (see also
proof that 22 over 7 exceeds π ).Efficient infinite series
:sum_{k=0}^inftyfrac{k!}{(2k+1)!!}=frac{pi}{2} (see also
double factorial ):12 sum^infty_{k=0} frac{(-1)^k (6k)! (13591409 + 545140134k)}{(3k)!(k!)^3 640320^{3k + 3/2=frac{1}{pi} (see
Chudnovsky brothers ):frac{2sqrt{2{9801} sum^infty_{k=0} frac{(4k)!(1103+26390k)}{(k!)^4 396^{4k=frac{1}{pi} (see
Srinivasa Ramanujan )The following are good for calculating arbitrary binary digits of π::sum_{k = 0}^{infty} frac{1}{16^k} left( frac{4}{8k + 1} - frac{2}{8k + 4} - frac{1}{8k + 5} - frac{1}{8k + 6} ight)=pi (see
Bailey-Borwein-Plouffe formula ):frac{1}{2^6} sum_{n=0}^{infty} frac(-1)}^n}{2^{10n left( - frac{2^5}{4n+1} - frac{1}{4n+3} + frac{2^8}{10n+1} - frac{2^6}{10n+3} - frac{2^2}{10n+5} - frac{2^2}{10n+7} + frac{1}{10n+9} ight)=pi
Other infinite series
:sum_{n=0}^{infty} frac{(-1)^{n{2n+1} = frac{1}{1} - frac{1}{3} + frac{1}{5} - frac{1}{7} + frac{1}{9} - cdots = arctan{1} = frac{pi}{4} (see
Leibniz formula for pi ):zeta(2) = frac{1}{1^2} + frac{1}{2^2} + frac{1}{3^2} + frac{1}{4^2} + cdots = frac{pi^2}{6} (see also
Basel problem andzeta function ):zeta(4)= frac{1}{1^4} + frac{1}{2^4} + frac{1}{3^4} + frac{1}{4^4} + cdots = frac{pi^4}{90}
:zeta(2n)= frac{1}{1^{2n + frac{1}{2^{2n + frac{1}{3^{2n + frac{1}{4^{2n + cdots = (-1)^{n+1}frac{B_{2n}(2pi)^{2n{2(2n)!}
:sum_{n=0}^{infty} frac{1}{(2n+1)^2} = frac{1}{1^2} + frac{1}{3^2} + frac{1}{5^2} + frac{1}{7^2} + cdots = frac{pi^2}{8}
:sum_{n=0}^{infty} frac{(-1)^n}{(2n+1)^3} = frac{1}{1^3} - frac{1}{3^3} + frac{1}{5^3} - frac{1}{7^3} + cdots = frac{pi^3}{32}
Machin-like formulae
See also
Machin-like formula .: frac{pi}{4} = 4 arctanfrac{1}{5} - arctanfrac{1}{239} (the original Machin's formula):frac{pi}{4} = arctanfrac{1}{2} + arctanfrac{1}{3}
:frac{pi}{4} = 2 arctanfrac{1}{2} - arctanfrac{1}{7}
:frac{pi}{4} = 2 arctanfrac{1}{3} + arctanfrac{1}{7}
:frac{pi}{4} = 5 arctanfrac{1}{7} + 2 arctanfrac{3}{79}
:frac{pi}{4} = 12 arctanfrac{1}{49} + 32 arctanfrac{1}{57} - 5 arctanfrac{1}{239} + 12 arctanfrac{1}{110443}
:frac{pi}{4} = 44 arctanfrac{1}{57} + 7 arctanfrac{1}{239} - 12 arctanfrac{1}{682} + 24 arctanfrac{1}{12943}
Infinite products
:prod_{n=1}^{infty} frac{4n^2}{4n^2-1} = frac{2}{1} cdot frac{2}{3} cdot frac{4}{3} cdot frac{4}{5} cdot frac{6}{5} cdot frac{6}{7} cdot frac{8}{7} cdot frac{8}{9} cdots = frac{pi}{2} (see also
Wallis product )Vieta's formula:
:frac{sqrt2}2 cdot frac{sqrt{2+sqrt22 cdot frac{sqrt{2+sqrt{2+sqrt2}2 cdot cdots = frac2pi
Three continued fractions
:3+pi= {6 + cfrac{1^2}{6 + cfrac{3^2}{6 + cfrac{5^2}{6 + cfrac{7^2}{ddots,}
:frac{4}{pi} = {1 + cfrac{1^2}{3 + cfrac{2^2}{5 + cfrac{3^2}{7 + cfrac{4^2}{ddots}
:pi = cfrac{4}{1 + cfrac{1}{2 + cfrac{9}{2 + cfrac{25}{2 + cfrac{49}{ddots},
For more on this third identity, see
Euler's continued fraction formula .(See also
continued fraction andgeneralized continued fraction .)Miscellaneous
:n! sim sqrt{2 pi n} left(frac{n}{e} ight)^n (
Stirling's approximation ):e^{i pi} + 1 = 0; (
Euler's identity ):sum_{k=1}^{n} varphi (k) sim frac{3n^2}{pi^2} (see
Euler's totient function ):sum_{k=1}^{n} frac {varphi (k)} {k} sim frac{6n}{pi^2} (see
Euler's totient function ):Gammaleft({1 over 2} ight)=sqrt{pi} (see also
gamma function ):pi = frac{Gammaleft({1/4} ight)^{4/3} mathrm{agm}(1, sqrt{2})^{2/3{2} (where agm is the
arithmetic-geometric mean )Physics
*The
cosmological constant :::Lambda = 8pi G} over {3c^2 ho
*Heisenberg's uncertainty principle:::Delta x, Delta p ge frac{h}{4pi}
*Einstein's field equation ofgeneral relativity :::R_{ik} - {g_{ik} R over 2} + Lambda g_{ik} = {8 pi G over c^4} T_{ik}
*Coulomb's law for theelectric force :::F = frac{left|q_1q_2 ight{4 pi varepsilon_0 r^2}
*Magnetic permeability of free space:::mu_0 = 4 pi cdot 10^{-7},mathrm{N/A^2},References
* Peter Borwein, " [http://www.cecm.sfu.ca/personal/pborwein/PAPERS/P159.pdf The Amazing Number Pi] "
ee also
*
Pi
*Computing π
*List of topics related to π
Wikimedia Foundation. 2010.