- Ixodes scapularis
-
- This article is about the tick. For the band, see Deer Tick (band).
Ixodes scapularis Scientific classification Kingdom: Animalia Phylum: Arthropoda Class: Arachnida Subclass: Acari Superorder: Parasitiformes Order: Ixodida Family: Ixodidae Genus: Ixodes Species: I. scapularis Binomial name Ixodes scapularis
Say, 1821Ixodes scapularis is commonly known as the deer tick or blacklegged tick (although some people reserve the latter term for Ixodes pacificus, which is found on the West Coast of the USA), and in some parts of the USA as the bear tick[1]. It is a hard-bodied tick (family Ixodidae) of the eastern and northern Midwestern United States. It is a vector for several diseases of animals, including humans (Lyme disease, babesiosis, anaplasmosis, etc) and is known as the deer tick due to its habit of parasitizing the white-tailed deer.
Contents
Description
The image shown at the upper right—and in fact, most images of Ixodes scapularis that are commonly available—show an adult that is unengorged, that is, an adult that has not had a blood meal. This is natural, since the ticks are generally removed immediately upon discovery to minimize the chance of disease. However, the abdomen that holds blood is so much larger when engorged and looks so different from the rest of the tick that it would be easy to assume that an engorged specimen of Ixodes scapularis is an entirely different tick (see photo at left).
When the deer tick has consumed a blood meal its abdomen will be a light grayish-blue color, whereas the tick itself is chiefly black. In identifying an engorged tick it is helpful to concentrate on the legs and upper part of the body.
Behavior
Ixodes scapularis has a 2 year life cycle, during which time it passes through three stages: larva, nymph, and adult. The tick must take a blood meal at each stage before maturing to the next. Deer tick females latch onto a host and drink its blood for four to five days. After it is engorged, the tick drops off and overwinters in the leaf litter of the forest floor. The following spring, the female lays several hundred to a few thousand eggs in clusters[2]. Transtadial (between tick stages) passage of Borrelia burgdorferi is common. Vertical passage (from mother to egg) of Borrelia is uncommon.
Ticks are very hardy creatures and Ixodes scapularis is no exception. Expect them to be active even after a moderate to severe frost as daytime temps can warm them enough to keep them actively searching for a host. In the spring, they can be one of the first invertebrates to become active. Deer ticks can be quite numerous and seemingly gregarious in areas where they are found.
As disease vector
Ixodes scapularis is the main vector of Lyme disease in North America.[3] It can also transmit other Borrelia species including Borrelia miyamotoi[4].
Ticks that transmit Borrelia burgdorferi to humans can also carry and transmit several other parasites such as Theileria microti and Anaplasma phagocytophilum, which cause the diseases babesiosis and human granulocytic anaplasmosis (HGA), respectively.[5] Among early Lyme disease patients, depending on their location, 2%–12% will also have HGA and 2%–40% will have babesiosis.[6]
Co-infections complicate Lyme symptoms, especially diagnosis and treatment. It is possible for a tick to carry and transmit one of the co-infections and not Borrelia, making diagnosis difficult and often elusive. The Centers for Disease Control (CDC)'s emerging infections diseases department did a study in rural New Jersey of 100 ticks and found that 55% of the ticks were infected with at least one of the pathogens.[7]
References
- ^ Drummond, Roger (2004). Ticks and What You Can Do about Them (3rd ed.). Berkeley, California: Wilderness Press. pp. 23. ISBN 0-89997-353-1.
- ^ Suzuki, David; Grady, Wayne (2004). Tree: A Life Story. Vancouver: Greystone Books. pp. 110. ISBN 1-55365-126-X.
- ^ Brownstein, John S.; Holford, Theodore R.; Fish, Durland (2005). "Effect of Climate Change on Lyme Disease Risk in North America". EcoHealth 2 (1): 38–46. doi:10.1007/s10393-004-0139-x. PMC 2582486. PMID 19008966. http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=2582486.
- ^ McNeil, Donald (19 September 2011). "New Tick-Borne Disease Is Discovered" (in English). The New York Times: pp. D6. http://www.nytimes.com/2011/09/20/health/20tick.html. Retrieved 20 September 2011.
- ^ Steere AC (July 2001). "Lyme disease". New England Journal of Medicine 345 (2): 115–25. doi:10.1056/NEJM200107123450207. PMID 11450660.
- ^ G. P. Wormser (June 2006). "Clinical practice. Early Lyme disease". New England Journal of Medicine 354 (26): 2794–801. doi:10.1056/NEJMcp061181. PMID 16807416.
- ^ Varde S, Beckley J, Schwartz I (1998). "Prevalence of tick-borne pathogens in Ixodes scapularis in a rural New Jersey County". Emerging Infectious Diseases 4 (1): 97–99. doi:10.3201/eid0401.980113. PMC 2627663. PMID 9452402. http://www.cdc.gov/ncidod/eid/vol4no1/varde.htm.
See also
External links
- Information on Tick-Related Health Threats and Deer Tick Fact Sheet from the National Pest Management Association
- blacklegged tick, Ixodes scapularis on the UF / IFAS Featured Creatures Web site
- Ixodes scapularis, black-legged tick, deer tick overview as a vector for Lyme disease, developmental stages at MetaPathogen
- Ixodes scapularis genome sequence at VectorBase
Please read to protect yourself from Deer ticks that may cause Lyme disease. http://www.mass.gov/Eeohhs2/docs/dph/cdc/factsheets/lyme.pdf
Zoonosis: Tick-borne diseases and mite-borne diseases Bacterial infection
(all G-)Viral infection Protozoan infection Neurotoxin General Tick infestationVectors TicksIxodes: Ixodes scapularis · Ixodes holocyclus · Ixodes pacificus · Ixodes ricinus
Dermacentor: Dermacentor variabilis · Dermacentor andersoni
Amblyomma: Amblyomma americanum · Amblyomma cajennense
other: Rhipicephalus sanguineusMitesLeptotrombidium deliense · Liponyssoides sanguineusM: IFT
helm,arth (acar)
helm, arth (lice), zoon
helm, arth
Categories:- Ixodes
- Arachnids of North America
- Animals described in 1821
- Sequenced genomes
Wikimedia Foundation. 2010.