Greek temple

Greek temple

Greek temples (Ancient Greek: "polytonic|ὁ ναός", " _gr. ho naós" "dwelling", semantically distinct from Latin " _la. templum" "temple") were structures built to house the cult statues within Greek sanctuaries. The temples themselves did usually not directly serve a cult purpose, since the sacrifices and rituals dedicated to the respective deity took place outside them. Temples were frequently used to store votive offerings. They are the most important and most widespread building type in Greek architecture. In the Hellenistic kingdoms of Southwest Asia and of North Africa, buildings erected to fulfil the functions of a temple often continued to follow local traditions. Even where a Greek influence is visible, such structures are not normally considered as Greek temples. This applies, for example, to the Graeco-Parthian and Bactrian temples, or to the Ptolemaic examples, which follow Egyptian tradition.

Basics

Within a few centuries, the Greeks developed the temple from the small mudbrick structures of the 9th century BC and the 8th century BC into the monumental double porticos of the 6th century, often reaching more than 20 m in height (not including the roof). For their execution, they relied on the regionally specific architectural orders. Originally, the distinction was between the Doric and Ionic orders; since the late 3rd century BC, the Corinthian order provided a third alternative. A multitude of different ground plans were developed, each of which could be combined with a superstructure in the different orders. From the 3rd century BC onwards, the construction of large temples became less common; after a short 2nd century BC flourish, it ceased nearly entirely in the 1st century BC. Thereafter, only smaller structures were newly begun, older temples continued to be renovated or (if incomplete) completed.

Greek temples were designed and constructed according to set rules, mostly determined by the lower diameter of the columns or by the dimensions of the foundation levels. The nearly mathematical strictness of the basic designs thus reached was lightened by optical refinements. In spite of the still widespread idealised image, Greek temples were painted, so that bright reds and blues contrasted with the white of the building stones or of stucco. The more elaborate temples were equipped with very rich figural decoration in the form of reliefs and pedimental sculpture. The construction of temples was usually organised and financed by cities or by the administrations of sanctuaries. Private individuals, especially Hellenistic rulers, could also sponsor such buildings. In the late Hellenistic period, their decreasing financial wealth, along with the progressive incorporation of the Greek world within the Roman State, whose officials and rulers took over as sponsors, led to the end of Greek temple construction. New temples now belonged to the tradition of Roman architecture, which, in spite of the Greek influence on it, aimed for different goals and followed different aesthetic principles.

Summary of development

Earliest origins

The basic principles for the development of Greek temple architecture have their roots between the 10th century BC and the 7th century BC. In its simplest form as a "naos", the temple was a simple rectangular shrine with protruding side walls (antae), forming a small porch. Until the 8th century BC, there were also apsidal structures with more or less semi-circular back walls, but the rectangular type prevailed. By adding columns to this small basic structure, the Greeks triggered the development and variety of their temple architecture.

Wooden architecture: Early Archaic

The first temples were mostly mudbrick structures on stone foundations. The columns and superstructure (entablature) were wooden, door openings and antae were protected with wooden planks. The mudbrick walls were often reinforced by wooden posts, in a type of half-timbered technique. The elements of this simple and clearly structured wooden architecture produced all the important design principles that were to determine the development of Greek temples for centuries.

Near the end of the 7th century BC, the dimensions of these simple structures were increased considerably. [Heinrich Drerup: "Griechische Baukunst in geometrischer Zeit". Göttingen 1969.] Temple B at Thermos is the first of the "hekatompedoi", temples with a length of 100 foot, ie. 32 to 33 m. Since it was not technically possible to roof broad spaces at that time, these temples remained very narrow, at 6 to 10 m width.

To stress the importance of the cult statue and the building holding it, the naos was equipped with a canopy, supported by columns. The resulting set of porticos surrounding the temple on all sides (the peristasis) was exclusively used for temples in Greek architecture. [Heinrich Drerup: "Zur Entstehung der griechischen Ringhalle". In: Nikolaus Himmelmann-Wildschütz & Hagen Biesantz (eds.): "Festschrift für Friedrich Matz". Mainz 1962, p. 32-38.]

The combination of the temple with porticos ("ptera") on all sides posed a new aesthetic challenge for the architects and patrons: the structures had to be built to be viewed from all directions. This led to the development of the "peripteros", with a frontal "pronaos" (porch), mirrored by a similar arrangement at the back of the building, the "opisthodomos", which became necessary for entirely aesthetic reasons.

Introduction of stone architecture: Archaic and Classical

Since the introduction of stone architecture in the early 6th century BC, the essential elements and forms of the temples, such as the number of columns and of column rows, underwent constant change throughout Greek antiquity.

In the 6th century BC, Ionian Samos developed the double-collonaded "dipteros" as an alternative to the single "peripteros". This idea was later copied in Didyma, Ephesos and Athens. Between the 6th and the late 4th century BC, innumerable temples were built; nearly every polis, every colony contained one or several. There were also temples at extra-urban sites and at major sanctuaries like Olympia and Delphi.

The observable change of form indicates the search for a harmonious form of all architectural elements: the development led from simpler early forms which often appear coarse and bulky up to the aesthetic perfection and refinement of the later structures; from simple experimentation to the strict mathematical complexity of ground plans and superstructures.

Decline of Greek temple building: Hellenistic period

From the early Hellenistic period onwards, the Greek peripteral temple lost much of its importance. With very few exceptions, Classical temple construction ceased both in Hellenistic Greece and in the Greek colonies of Magna Graecia. Only the west of Asia Minor maintained a low level of temple construction during the 3rd century BC. The construction of large projects, such as the temple of Apollo at Didyma near Miletus and the Artemision at Sardis did not make much progress.

The 2nd century saw a revival of temple architecture, including peripteral temples. This is partially due to the influence of the architect Hermogenes of Priene, who redefined the principles of Ionic temple construction both practically and through theoretical work. [Ralf Schenk: "Der korinthische Tempel bis zum Ende des Prinzipats des Augustus". Internationale Archäologie Vol. 45, 1997, p. 41-47.] At the same time, the rulers of the various Hellenistic kingdoms provided copious financial resources. Their self-aggrandisation, rivalry, desires to stabilise their spheres of influence, as well as the increasing conflict with the Rome (partially played out in the field of culture), combined to release much energy into the revival of complex Greek temple architecture. [Klaus Bringmann & Barbara Schmidt-Dounas: "Schenkungen hellenistischer Herrscher an griechische Städte und Heiligtümer. Historische und archäologische Auswertung". Ed. by Hans von Steuben & Klaus Bringman. Akademie Verlag Berlin, Berlin 2000.] During this phase, Greek temples became widespread in southern Asia Minor, Egypt and Northern Africa.

But in spite of such examples and of the positive conditions produced by the economic upturn and the high degree of technical innovation in the 3rd and 2nd centuries BC [Astrid Schürman: "Griechische Mechanik und antike Gesellschaft". Stuttgart 1991, p. 5.] , Hellenistic religious architecture is mostly represented by a multitude of small temples "in antis" and "prostyle" temples, as well as tiny shrines ("naiskoi"). The latter had been erected in important places, on market squares, near springs and by roads, since the Archaic period, but reached their main flourish now. This limitation to smaller structures led to the development of a special form, the "pseudoperipteros", which uses engaged columns along the cella walls to produce the illusion of a peripteral temple. An early case of this is temple L at Epidauros, followed by many prominent Roman examples, such as the Maison Carrée at Nîmes. [Hans Lauter: "Die Architektur des Hellenismus". Wiss. Buchges., Darmstadt 1986, p. 180-194; Gottfried Gruben: : "Die Tempel der Griechen". Hirmer, München 2001 (5th edn.), p. 33-44.]

The end of Greek temple construction: Roman Greece

In the early 1st century BC, the Mithridatic Wars led to changes of architectural practice. The role of sponsor was increasingly taken by Roman magistrates of the Eastern provinces [Friedemann Quaß: "Die Honoratiorenschicht in den Städten des griechischen Ostens. Untersuchungen zur politischen und sozialen Entwicklung in hellenistischer und römischer Zeit". Stuttgart 1993.] , who rarely demonstrated their generosity by building temples. [Klaus Tuchelt: "Frühe Denkmäler Roms in Kleinasien". 23. Beiheft Mitteilungen des Deutschen Archäologischen Instituts Abteilung Istanbul. 1979, p. 119-122.] Nevertheless, some temples were erected at this time, eg. the Temple of Aphrodite at Aphrodisias. [Charlotte Roueché & Kenan T. Erim (Hrsg.): "Aphrodisias Papers: Recent Work on Architecture and Sculpture". In: "Journal or Roman Archaeology". Supplementary series Vol. 1. 1990, p. 37 ff.]

The introduction of the principate lead to few new buildings, mostly temples for the imperial cult [Heidi Hänlein-Schäfer: "Veneratio Augusti. Eine Studie zu den Tempeln des ersten römischen Kaisers". Rome 1985.] or to Roman deities, eg the temple of Jupiter at Baalbek. [Margarete van Ess & Thomas Weber (Hrsg.): "Baalbek. Im Bann römischer Monumentalarchitektur". 1999; Klaus Stefan Freyberger: "Im Licht des Sonnengottes. Deutung und Funktion des sogenannten Bacchus-Tempels im Heiligtum des Jupiter Heliopolitanus in Baalbek". In: "Mitteilungen des Deutschen Archäologischen Instituts Abteilung Damaskus". Vol. 12. 2000, p. 95-133.] Although new temples to Greek deities still continued to be constructed, eg. the Tychaion at Selge [Alois Machatschek - Mario Schwarz: "Bauforschungen in Selge". Österreichische Akademie der Wissenschaften Philosophisch – Historische Klasse Denkschriften. 152. Band. Ergänzungsbände zu den Tituli Asiae Minoris. Verlag der Österreichischen Akademie der Wissenschaften, Wien 1981, p. 96 Taf. 4 Fig. 70; J. Nollé & F. Schindler: "Die Inschriften von Selge". 1991, p. 89 No. 17.] they tend to follow the canonical forms of the developing Roman imperial style of architecture [John B. Ward-Perkins: "Roman Imperial Architecture". 1983.] or to maintain local non-Greek idiosyncrasies, like the temples in Petra [Klaus Stefan Freyberger & Martha Sharp Joukowsky: "Blattranken, Greifen und Elefanten. Sakrale Architektur in Petra". In: Thomas Weber & Robert Wenning (eds.): "Petra: antike Felsstadt zwischen arabischer Tradition und griechischer Norm". Sonderheft Antike Welt. Zabern, Mainz 1997, p. 71 ff.] or Palmyra. [Pierre Collart: "Le sanctuaire de Baalshamin à Palmyre". 1969.] The increasing romanisation of the east [Elizabeth Fentress (Ed.): "Romanization and the City. Creation, Transformation, and Failures". In: "Proceedings of a conference held at the American Academy in Rome to celebrate the 50th anniversary of the excavations at Cosa, 14 - 16 May, 1998. Journal of Roman Archaeology". Supplementary series Vol. 38. Portsmouth 2000.] entailed the end of Greek temple architecture, although work continued on the completion of unfinished large structures like the temple of Apollo at Didyma or the Olympieion at Athens into the later 2nd century AD. [Regarding Roman period and financing, using the province of Asia as an example, see Stefan Cramme: "Die Bedeutung des Euergetismus für die Finanzierung städtischer Aufgaben in der Provinz Asia". Köln 2001. ( [http://deposit.ddb.de/cgi-bin/dokserv?idn=96238805x&dok_var=d1&dok_ext=pdf&filename=96238805x.pdf Online] ).]

The abandonment and conversion of temples: Late Antiquity

The edicts of Theodosius I and his successors on the throne of the Roman Empire, banning pagan cults, led to the gradual closure of Greek temples, or their conversion into Christian churches.

Thus ends the history of the Greek temple, although many of them remained in use for a long time afterwards. For example, the Athenian Parthenon, first reconsecrated as a church was turned into a mosque after the Ottoman conquest and remained structurally unharmed until the 17th century AD. Only the unfortunate impact of a Venetian cannonball into the building, then used to store gunpowder, led to the destruction of this important temple, more than 2,000 years after it was built.

Structure

Canonical Greek temples maintained the same basic structure throughout many centuries. The Greeks used a limited number of spatial components, influencing the plan, and of architectural members, determining the elevation.

Floor plan

Naos

The central cult structure of the temple, the "naos", can be separated in several areas. Usually, the main room, the "cella", contained a cult statue of the respective deity. In Archaic temples, a separate room, the so-called "adyton" was sometimes included in the cella for this purpose. In Sicily, this habit continued into the Classical period.

Pronaos and opisthodomos

At the front of the "cella", there is a porch, the "pronaos", created by the protruding side walls of the "cella" (the "antae)", and two columns placed between them. A similar room at the back of the cella is called the "opisthodomos". There is no door connecting the latter with the "cella"; its existence is necessitated entirely by aesthetic considerations: to maintain the consistency of the peripteral temple and to ensure its viewability from all sides, the execution of the front has to be repeated at the rear.

Peristasis

The "naos" is enclosed on all four sides by the "peristasis (architecture)", usually a single row, rarely a double one, of columns. This produces a surrounding portico, the "pteron", which offered shelter to visitors of the sanctuary and room for cult processions.

Plan types

These components allowed the realisation of a variety of different plan types in Greek temple architecture. The simplest example of a Greek temple is the "templum in antis", a small rectangular structure sheltering the cult statue. In front of the "cella", a small porch or "pronaos" was formed by the protruding cella walls, the antae. The pronaos was linked to the cella by a door. To support the superstructure, two columns were placed between the fronts of the "antae" ("in antis"). When equipped with an "opisthodomos", this type is called a double anta temple. A variant of that type has the "opisthodomos" at the back of the "cella" indicated merely by half-columns and shortened "antae", so that it can be described as a "pseudo-opisthodomos". If the porch of a temple "in antis" has a row of usually four or six columns in front of its whole breadth, the temple is described as a "prostylos" or "prostyle temple. An "amphiprostylos" repeats the same column setting at the back.

In contrast, the term "peripteros" designates a temple surrounded by "ptera" (colonnades) on all four sides, each usually formed by single row of columns. This produces an unobstructed surrounding portico, the "peristasis", on all four sides of the temple. A Hellenistic and Roman form of this shape is the "pseudoperipteros", where the side and rear porches are indicated only by engaged columns or pilasters directly attached to the external cella walls.

A "dipteros" is equipped with a double colonnade on all four sides, sometimes with further rows of columns at the front and back. A "pseudodipteros" lacks the inner row of columns in its "peristasis", but has porches of double width.

Circular temples form a special type. If they are surrounded by a colonnade, they are known as peripteral tholoi. Although of sacred character, their function as a temple can often not be asserted. A comparable structure is the "monopteros", or "cyclostyle" which, however, lacks a "cella".

To clarify ground plan types, the defining terms can be combined, producing terms such as: peripteral double anta temple, prostyle "in antis", peripteral amphiprostyle, etc.

Column number terminology

An additional definition, already used by Vitruvius (IV, 3, 3) is determined by the number of columns at the front. Modern scholarship uses the following terms:

The term "dodekastylos" is only used for the 12-column hall at the Didymaion. No temples with facades of that width are known.

Very few temples had an uneven number of columns at the front. Examples are Temple of Hera I at Paestum, Temple of Apollo A at Metapontum, both of which have a width of nine columns (enneastyle), and the Archaic temple at Thermos with a width of five columns (pentastyle).

Elevation

The elevation of Greek temples is always subdivided in three zones: the "crepidoma", the columns and the entablature.

Foundations and crepidoma

The underground foundation of a Greek temple is known as the stereobate. It consists of several layers of squared stone blocks. The uppermost layer, the "euthynteria", partially protrudes above the ground level. Its surface is carefully smoothed and levelled. It supports a further foundation of three steps, the "crepidoma". The uppermost level of the "crepidoma" provides the surface on which the columns and walls are placed; it is called stylobate. Stereobate, "euthynteria" and "crepidoma" form the substructure of the temple.

Columns

Placed on the stylobate are the vertical column shafts, tapering towards the top. They are normally made of several separately cut column drums. Depending on the architectural order, a different number of flutings are cut into the column shaft: Doric columns have 18 to 20 flutings, Ionic and Corinthian ones normally have 24. Early Ionic columns had up to 48 flutings. While Doric columns stand directly on the stylobate, Ionic and Corinthian ones possess a base, sometimes additionally placed atop a plinth.

In Doric columns, the top is formed by a concavely curved neck, the "hypotrachelion", and the capital, in Ionic columns, the capital sits directly on the shaft. In the Doric order, the capital consists of a circular torus bulge, originally very flat, the so-called "echinus", and a square slab, the "abacus". In the course of their development, the "echinus" expands more and more, culminating in a linear diagonal, at 45° to the vertical. The "echinus" of Ionic columns is decorated with an egg-and-dart band followed by a sculpted pillow forming two volutes, supporting a thin "abacus". The eponymous Corinthian capital of the Corinthian order is crowned by rings of stylised acanthus leaves, forming tendrils and volutes that reach to the corners of the "abacus".

Entablature

The capitals support the entablature. In the Doric order, the entablature always consists of two parts, the architrave and the Doric frieze (or triglyph frieze). The Ionic order of Athens and the Cyclades also used a frieze above an architrave, whereas the frieze remained unknown in the Ionic architecture of Asia Minor until the 4th century BC. There, the architrave was directly followed by the "dentil". The frieze was originally placed in front of the roof beams, which were externally visible only in the earlier temples of Asia Minor. The Doric frieze was structured by triglyphs. These were placed above the axis of each column, and above the centre of each intercolumniation. The spaces between the triglyphs contained metopes, sometimes painted or decorated with relief sculpture. In the Ionic or Corinthian orders, the frieze possesses no triglyphs and is simply left flat, sometimes decorated with paintings or reliefs. With the introduction of stone architecture, the protection of the porticos and the support of the roof construction was moved upwards to the level of the "geison", depriving the frieze of its structural function and turning it into an entirely decorative feature. Frequently, the "cella" is also decorated with architrave and frieze, especially at the front of the "pronaos".

Cornice and geison

Above the frieze, or an intermediate member, eg. the dentil of the Ionic or Corinthian orders, the cornice protrudes notably. It consists of the "geison" (on the sloped sides or pediments of the narrow walls a sloped "geison"), and the "sima". On the long side, the "sima", often elaborately decorated, was equipped with water spouts, often in the shape of lions' heads. The pedimental triangle or "tympanon" on the narrow sides of the temple was created by the Doric introduction of the gabled roof, earlier temples often had hipped roofs. The "tympanon" was usually richly decorated with sculptures of mythical scenes or battles. The corners and ridges of the roof were decorated with "acroteria", originally geometric, later floral or figural decorations.

Aspect

As far as topographically possible, the temples were freestanding and designed to be viewed from all sides. They were not normally designed with consideration for their surroundings, but formed autonomous structures. This is a major difference from Roman temples which were often designed as part of a planned urban area or square and had a strong emphasis on being viewed frontally.

Design and measurements

Proportions

The foundations of Greek temples could reach dimensions of up to 115 by 55 m, i.e. the size of an average soccer field. Columns could reach a height of 20 m. To design such large architectural bodies harmoniously, a number of basic aesthetic principles were developed and tested already on the smaller temples. the main measurement was the foot, varying between 29 and 34 cm from region to region. This initial measurement was the basis for all the units that determined the shape of the temple. Important factors include the lower diameter of the columns and the width of their plinths. The distance between the column axes (intercolumniation or bay) could also be used as a basic unit. these measurements were in set proportions to other elements of design, such as column height and column distance. In conjunction with the number of columns per side, they also determined the dimensions of stylobate and "peristasis", as well as of the "naos" proper. The rules regarding vertical proportions, especially in the Doric order, also allow for a deduction of the basic design options for the entablature from the same principles. Alternatives to this very rational system were sought in the temples of the late 7th and early 6th centuries BC, when it was attempted to develop the basic measurements from the planned dimensions of "cella" or stylobate, i.e. to reverse the system described above and deduce the smaller units from the bigger ones. Thus, for example, the "cella" length was sometimes set at 100 foot (100 is a sacred number, also known from the "hecatomb", a sacrifice of 100 animals), and all further measurements had to be in relation to this number, leading to aesthetically quite unsatisfactory solutions.

Naos-peristasis relationship

Another determining design feature was the relationship linking "naos" and "peristasis". In the original temples, this would have been subject entirely to practical necessities, and always based on axial links between "cella" walls and columns, but the introduction of stone architecture broke that connection. Nevertheless, it did survive throughout Ionic architecture. In Doric temples, however, the wooden roof construction, originally placed behind the frieze, now started at a higher level, behind the "geison". This ended the structural link between frieze and roof; the structural elements of the latter could now be placed independent of axial relationships. As a result, the "cella" walls lost their fixed connection with the columns for a long time and could be freely placed within the "peristasis". Only after a long phase of developments did the architects choose the alignment of the outer wall face with the adjacent column axis as the obligatory principle for Doric temples. Doric temples in Greater Greece rarely follow this system.

Column number formula

The basic proportions of the building were determined by the numeric relationship of columns on the front and back to those on the sides. The classic solution chosen by Greek architects is the formula "frontal columns : side columns = n : (2n+1)", which can also be used for the number of intercolumniations. As a result, numerous temples of the Classical period in Greece ("circa" 500 to 336 BC) had 6 x 13 columns or 5 x 11 intercolumnitions. The same proportions, in a more abstract form, determine most of the Parthenon, not only in its 8 x 17 column "peristasis", but also, reduced to 4:9, in all other basic measurements, including the intercolumniations, the stylobate, the width-height proportion of the entire building, and the "geison" (here reversed to 9:4). [The same basic proportion occurs, less purely, in the Temple of Hephaestus of Athens. Wolfgang Müller-Wiener: "Griechisches Bauwesen in der Antike". C. H. Beck, München 1988, p. 27-32.]

Column spacing

Since the turn of the 3rd and 2nd centuries BC, the proportion of column width to the space between columns, the intercolumnium, played an increasingly important role in architectural theory, reflected, for example, in the works of Vitruvius. According to this proportion, Vitruvius (3, 3, 1 ff) distinguished between five different design concepts and temple types:
* Pyknostyle, tight-columned: intercolumnium = 1 ½ lower column diameters
* Systyle, close-columned: intercolumnium = 2 lower column diameters
* Eustyle, well-columned: intercolumnium = 2 ¼ lower column diameters
* Diastyle, board-columned: interkolumnium = 3 lower column diameters
* Araeostyle, light-columned: intercolumnium = 3 ½ lower column diametersThe determination and discussion of these basic principles went back to Hermogenes, whom Vitruvius credits with the invention of the "eustylos". The Temple of Dionysos at Teos, normally ascribed to Hermogenes, does indeed have intercolumnia measuring 2 ⅙ of the lower column diameters. [Wolfram Hoepfner in: Wolfram Hoepfner & Ernst-Ludwig Schwandner (eds.): "Hermogenes und die hochhellenistische Architektur." Internationales Kolloquium in Berlin vom 28. bis 29. Juli 1988 im Rahmen des XIII. Internationalen Kongresses für Klassische Archäologie. Mainz 1990. p. 12; Meral Ortac: "Die hellenistischen und römischen Propyla in Kleinasien". 2001, p. 115 ( [http://deposit.ddb.de/cgi-bin/dokserv?idn=96916422x&dok_var=d1&dok_ext=pdf&filename=96916422x.pdf Online] ).]

Optical refinements

To loosen up the mathematical strictness and to counteract distortions of human visual perception, a slight curvature of the whole building, hardly visible with the naked eye, was introduced. The ancient architects had realised that long horizontal lines tend to make the optical impression of sagging towards their centre. To prevent this effect, the horizontal lines of stylobate and/or entablature were raised by a few centimetres towards the middle of a building. This avoidance of mathematically straight lines also included the columns, which did not taper in a linear fashion, but were refined by a pronounced "swelling" ("entasis") of the shaft. Additionally, columns were placed with a slight inclination towards the centre of the building. Curvature and entasis occur from the mid 6th century BC onwards. The most consistent use of these principles is seen in the Classical Parthenon on the Athenian Acropolis. Its curvature affects all horizontal elements up to the sima, even the cella walls reflect it throughout their height. The inclination of its columns (which also have a clear entasis), is continued by architrave and triglyph frieze, the external walls of the cella also reflect it. Not one block of the building, not a single architrave or frieze element could be hewn as a simple rectilinear block. All architectural elements display slight variations from the right angle, individually calculated for each block. As a side effect, each preserved building block from the Parthenon, its columns, cella walls or entablature, can be assigned its exact position today. In spite of the immense extra effort entailed in this perfection, the Parthenon, including its sculptural decoration, was completed in the record time of sixteen years (447 to 431 BC). [Lothar Haselberg: "Old Issues, New Research, Latest Discoveries: Curvature and Other Classical Refinements". In: Lothar Haselberger (ed.): "Appearance and Essence. Refinements of Classical Architecture: Curvature". University of Pennsylvania Press, Philadelphia 1999, p. 1-68.]

Decoration

Colouring

Greek temples were, as a rule, colourfully painted. Only three basic colours, with no shades, were used: white, blue and red, occasionally also black. The crepidoma, columns and architrave were mostly white. Only details, like the horizontally cut grooves at the bottom of Doric capitals ("anuli"), or decorative elements of Doric architraves (eg. "taenia" and "guttae") might be painted in different colours. The frieze was clearly structured by use of colours. In a Doric triglyph frieze, blue triglyphs alternated with red metopes, the latter often serving as a background for individually painted sculptures. Reliefs, ornaments and pedimental sculptures were executed with a wider variety of colours and nuances. Recessed or otherwise shaded elements, like mutules or triglyph slits could be painted black. Paint was mostly applied to parts that were not load-bearing, whereas structural parts like columns or the horizontal elements of architrave and "geison" were left unpainted (if made of high quality limestone or marble) or covered with a white stucco.

Architectural sculpture

Greek temples were often enhanced with figural decorations. especially the frieze areas offered space for reliefs and relief slabs; the pedimental triangles often contained scenes of free-standing sculpture. In Archaic times, even the architrave could be relief-decorated on Ionic temples, as demonstrated by the earlier temple of Apollo at Didyma. Here, the architrave corners bore gorgons, surrounded by lions and perhaps other animals. On the other hand, the Ionic temples of Asia Minor did not possess a separate frieze to allow space for relief decoration. The most common area for relief decoration remained the frieze, either as a typical Doric triglyph frieze, with sculpted metopes, or as a continuous frieze on Cycladic and later on Eastern Ionic temples.

Metopes

The metopes, separate individual tableaux that could usually not contain more than three figures each, usually depicted individual scenes belonging to a broader context. It is rare for scenes to be distributed over several metopes; instead, a general narrative context, usually a battle, is created by the combination of multiple isolated scenes. Other thematical contexts could be depicted in this fashion. For example, the metopes at the front and back of the Temple of Zeus at Olympia depicted the Twelve Labours of Heracles. Individual mythological scenes, like the abduction of Europa or a cattle raid by the Dioscuri could be thus depicted, as could scenes from the voyage of the Argonauts or the Trojan War. The battles against the centaurs and amazons, as well as the gigantomachy, all three depcited on the Parthenon, were recurring themes on many temples.

Friezes

Battle scenes of all kinds were also a common theme of Ionic friezes, eg. the Gigantomachy on the temple of Hekate at Lagina, or the Amazonomachy on the temple of Artemis at Magnesia on the Maeander, both from the late 2nd century BC. Complex compositions visualised the back and forth of fighting for the viewer. Such scenes were contrasted by more quiet or peaceful ones: The Assembly of the gods and a procession dominate the 160 m long frieze that is placed on top of the "naos" walls of the Parthenon.

Pediments

Special attention was paid to the decoration of the pedimental triangles, not least because of their size and frontal position. Originally, the pediments were filled with massive reliefs, e.g. shortly after 600 BC on the temple of Artemis at Kerkyra, where the west pediment is taken up by the gorgon Medusa and her children at the centre, flanked by panthers. Smaller scenes are displayed in the low corners of the pediments, eg. Zeus with a thunderbolt, fighting a Giant. The pedimental sculpture of the first peripteral temple on the Athenian Acropolis, from "circa" 570 BC, is nearly free-stading sculpture, but remains dominated by a central scene of fighting lions. , late 3rd century BC, depicted a probably purely local legend, of no major interest to Greece as a whole.

Roofs

The roofs were crowned by "acroteria", originally in the form of elaborately painted clay disks, from the 6th century BC onwards as fully sculpted figures placed on the corners and ridges of the pediments. They could depict bowls and tripods, griffins, spinxes, and especially mythical figures and deities. For example, depictions of the running Nike crowned the Alcmaeonid temple of Apollo at Delphi, and mounted amazons formed the corner akroteria of the temple of Asklepios in Epidauros. Pausanias (5, 10, 8) describes bronze tripods forming the corner akroteria and statues of Nike by Paeonios forming the ridge ones on the Temple of Zeus at Olympia.

Columns

For the sake of completeness, a further potential bearer of sculptural decoration should be mentioned here: the "columnae celetae" of the Ionic temples at Ephesos and Didyma. Here, already on the Archaic temples, the lower parts of the column shafts were decorated by protruding relief decorations, originally depicting rows of figures, replaced on their late Classical and Hellenistic successors with mythological scenes and battles. [About architectural sculpture: M. Oppermann: "Vom Medusabild zur Athenageburt. Bildprogramme griechischer Tempelgiebel archaischer und klassischer Zeit". 1990; Heiner Knell: "Mythos und Polis. Bildprogramme griechischer Bauskulptur". 1990.]

Function and design

Cult statue and cella

The functions of the temple mainly concentrated on the "cella", the "dwelling" of the cult statue. The elaboration of the temple's external aspects served to stress the dignity of the "cella". In contrast, the "cella" itself was often finished with some moderation. The only source of light for "cella" and cult statue was the "cella"'s frontal door. Thus, the interior only received a limited amount of light. Exceptions are found in the temples of Apollo at Bassae and of Athena at Tegea, where the southern "cella" wall had a door, potentially allowing more light into the interior. A special situation applies to the temples of the Cyclades, where the roof was usually of marble tiles. Marble roofs also covered the temple of Zeus at Olympia and the Parthenon at Athens. As marble is not entirely opaque, those "cellas" may have been permeated with a distinctive diffused light. For cultic reasons, but also to use the light of the rising sun, virtually all Greek temples were oriented to the east. Some exceptions existed, eg. the west-facing temples of Artemis at Ephesos and at Magnesia on the Maeander, or the north-south oriented temples of Arcadia. Such exceptions are probably connected with cult practice.

Refinements

The cult statue was often oriented towards an altar, placed axially in front of the temple. To preserve this connection, the single row of columns often found along the central axis of the "cella" in early temples was replaced by two separate rows towards the sides. The central one of the three aisles thereby created was often emphasised as the main one. The dignity of the central aisle of the "cella" could be underlined by the use of special elements of design. For example, the oldest known Corinthian capitals are from the "naoi" of Doric temples. The impressiveness of the internal aisle could be emphasised further by having a third row of columns along the back, as is the case at the Parthenon and at the temple of Zeus in Nemea. The Parthenon "cella', also had another impressive feature, namely two tiers of columns atop each other, as did the temple of Aphaia on Aegina. The temple of Athena at Tegea shows another variation, where the two column rows are indicated by half-columns protruding from the side walls and crowned with Corinthian capitals. An early form of this solution can be seen at Bassae, where the central column of the back portico remains free-stading, while the columns along the sides are in fact semi-columns connected with the walls by curved protrusions.

Restricted access

The cella of a Greek temple was entered only rarely and by very few visitors. Generally, entry to the room, except during important festivals or other special occasions, was limited to the priests. Sometimes, the divine character of the cult image was stressed even more by removing it further into a separate space within the "cella", the "adyton". Especially in Magna Graecia, this tradition continued for a long time. Over the decades and centuries, numerous votive offerings could be placed in the "cella", giving it a museum-like character (Pausanias 5, 17).

Opisthodomos

The back room of the temple, the "opisthodomos", usually served as a storage space for cult equipment. It could also hold the temple treasury. For some time, the opisthodomus of the Athenian Parthenon contained the treasury of the Delian League, thus directly protected by the deity. "Pronaos" and "opisthodomos" were often closed off from the peristasis by wooden barriers or fences.

Peristasis

Like the cella, the "peristasis" could serve the display and storage of votives, often placed between the columns. In some cases, votive offerings could also be directly affixed to the columns, as is visible eg. on the Temple of Hera at Olympia. The "peristasis" could also be used for cult processions, or simply as shelter from the elements, a function emphasised by Vitruvius (III 3, 8f).

Sponsors, construction and costs

Public and private sponsors

The sponsors of Greek temples usually belonged to one of two groups: on the one hand public sponsors, including the bodies and institutions that administrated important sanctuaries; on the other hand influential and affluent private sponsors, especially Hellenistic kings. The financial needs were covered by income from taxes or special levies, or by the sale of raw materials like silver. The collection of donations also occurred, especially for supra-regional sanctuaries like Delphi or Olympia. Hellenistic monarchs could appear as private donors in cities outside their immediate sphere of influence and sponsor public buildings, as exemplified by Antiochos IV, who ordered the rebuilding of the Olympieion at Athens. In such cases, the money came from the private treasury of the donor. [K. Bringmann & H. von Steuben, "Schenkungen hellenistischer Herrscher an griechische Städte und Heiligtümer". 1995; Hildegard Schaaf: "Untersuchungen zu Gebäudestiftungen hellenistischer Zeit". 1992.]

Organisation

Building contracts were advertised after a popular or elected assembly had passed the relevant motion. An appointed committee would chose the winner among the submitted plans. Afterwards, another committee would supervise the building process. Its responsibilities included the advertising and awarding of individual contracts, the practical supervision of the construction, the inspection and acceptance of completed parts, and the paying of wages. The original advert contained all the information necessary to enable a contractor to make a realistic offer for completing the task. Contracts were normally awarded to the competitor offering the most complete service for the cheapest price. In the case of public buildings, the materials were normally provided by the public sponsor, exceptions were clarified in the contract. Contractors were usually only responsible for specific parts of the overall construction, as most businesses were small. Originally, payment was by person and day, but from the 5th century onwards, payment by piece or cosntruction stage became common. [Hans Lauter: "Die Architektur des Hellenismus". Wiss. Buchges., Darmstadt 1986, p. 12-27; Wolfgang Müller-Wiener: "Griechisches Bauwesen in der Antike". C. H. Beck, München 1988, p. 15-25, 33-39.]

Costs

The costs could be immense. For example, surviving receipts show that in the rebuilding of the Artemision of Ephesos, a single column cost 40,000 drachmas. Considering that a worker was paid about two drachmas, that equals nearly 2 million Euro (on a modern west European wage scale). Since the overall number of columns required for the design was 120, even this aspect of the building would have caused costs equivalent to those of major projects today (circa 360 million Euro) [Albert Rehm: "Die Inschriften". In: Theodor Wiegand: "Didyma". 2. Teil (ed. by Richard Harder). Berlin 1958. p. 13–103. The calculation is based on a low skilled craftsman's daily pay of circa 150 Euro in modern Germany.]

Temples of the different architectural orders

One of the criteria by which Greek temples are classified is the Classical order chosen as their basic aesthetic principle. This choice, which was rarely entirely free, but normally determined by tradition and local habit, would lead to widely differing rules of design. According to the three major orders, a basic distinction can be made between the Doric, the Ionic and the Corinthian Temple.

Doric temples

The modern image of Greek temple architecture is strongly influenced by the numerous reasonably well-preserved temples of the Doric order. Especially the ruins of Southern Italy and Sicily were accessible to western travellers quite early in the development of Classical studies, eg. the temples at Paestum, Akragas or Segesta [Dieter Mertens: "Der Tempel von Segesta und die dorische Tempelbaukunst des griechischen Westens in klassischer Zeit". 1984.] , but the Hephaisteion and the Parthenon of Athens also influenced scholarship and Neoclassical architecture from an early point onwards.

Beginnings

The beginnings of Greek temple construction in the Doric order can be traced to early in the 7th century BC. With the transition to stone architecture around 600 BC, the order was fully developed; from then on, only details were changed, developed and refined, mostly in the context of solving the challenges posed by the design and construction of monumental temples.

First monumental temples

Apart from early forms, occasionally still with apsidal backs and hipped roofs, the first 100-foot peripteral temples occur quite soon, before 600 BC. An example is Temple C at Thermos, "circa" 625 BC [Georg Kawerau & Georgios Soteriades: "Der Apollotempel zu Thermos". In: "Antike Denkmäler". Bd. 2, 1902/08. ( [http://digi.ub.uni-heidelberg.de/diglit/ad1908/ Online] ).] , a 100-foot long "hekatompedos", surrounded by a "peristasis" of 5 x 15 columns, its cella divided in two aisles by a central row of columns. Its entirely Doric entablature is indicated by painted clay plaques, probably early example of metopes, and clay triglyphs. [H. Koch: "Zu den Metopen von Thermos". In: "Mitteilungen des Deutschen Archäologischen Instituts Abteilung Athen". Bd. 39, 1914, S. 237 ff.] It appears to be the case that all temples erected within the spheres of influence of Corinth and Argos in the 7th century BC were Doric "peripteroi". The earliest stone columns did not display the simple squatness of the high and late Archaic specimens, but rather mirror the slenderness of their wooden predecessors. Already around 600 BC, the demand of viewability from all sides was applied to the Doric temple, leading to the mirroring of the frontal "pronaos" by an "opisthodomos" at the back. This early demand continued to affect Doric temples especially in the Greek motherland. Neither the Ionic temples, nor the Doric specimens in Magna Graecia followed this principle [Dieter Mertens: "Der alte Heratempel in Paestum und die archaische Baukunst in Unteritalien". 1993.] The increasing monumentalisation of stone buildings, and the transfer of the wooden roof construction to the level of the "geison" removed the fixed relationship between the "naos" and the "peristasis". This relationship between the axes of walls and columns, almost a matter of course in smaller structures, remained undefined and without fixed rules for nearly a century: the position of the "naos" "floated" within the "peristasis".

tone-built temples

The Heraion at Olympia (c. 600 BC)

The Heraion of Olympia [Alfred Mallwitz: "Das Heraion von Olympia und seine Vorgänger". In: "Jahrbuch des Deutschen Archäologischen Instituts". Bd. 81, 1966, p. 310-376.] ("circa" 600 BC) exemplifies the transition from wood to stone construction. This building, initially constructed entirely of wood and mudbrick, had its wooden columns gradually replaced with stone ones over time. Like a museum of Doric columns and Doric capitals, it contains examples of all chronological phases, up to the Roman period. One of the columns in the "opisthodomos" remained wooden at least until the 2nd century AD, when Pausanias described it. This 6 by 16 column temple already called for a solution to the Doric corner conflict. It was achieved through a reduction of the corner intercolumniations the so-called corner contraction. The Heraion is most advanced in regards to the relationship between "naos" and "peristasis", as it uses the solution that became canonical decades later, a linear axis running along the external faces of the outer "naos" walls and through the central axis of the associated columns. Its differentiation between wider intercolumnia on the narrow sides and narrower ones on the long sides was also an influential feature, as was the positioning of the columns within the "cella", coresponding with those on the outside, a feature not repeated until the construction of the temple at Bassae 150 years later. [Frederick A. Cooper: "The Temple of Apollo Bassitas". Vol. 1-4. 1992-1996.]

Temple of Artemis, Kerkyra (early 6th century)

The oldest Doric temple entirely built of stone is represented by the early 6th century BC temple of Artemis in Kerkyra (modern Corfu). [Gerhard Rodenwaldt: "Korkyra. Bd. 1 - Der Artemistempel". 1940.] All parts of this building are bulky and heavy, its columns reach a height of barely five times their bottom diameter and were very closely spaced with an intercolumniation of a single column width. The individual members of its Doric orders all differ considerably from the later canon, although all essential Doric features are present. Its ground plan of 8 by 17 columns, probably pseudoperipteral, is unusual.

Archaic Olympieion, Athens

Among the Doric temples, the Peisistratid Olympieion at Athens has a special position. [Renate Tölle-Kastenbein: "Das Olympieion in Athen". Böhlau, Köln 1994.] Although this building was never completed, its architect apparently attempted to adapt the Ionic "dipteros". Column drums built into the later foundations indicate that it was originally planned as a Doric temple. Nonetheless, its ground plan follows the Ionic examples of Samos so closely that it would be hard to reconcile such a solution with a Doric triglyph frieze. After the expulsion of Hippias in 510 BC, work on this structure was stopped: Democratic Athens had no desire to continue a monument of tyrannical self-aggrandisation.

Classical period: canonisation

Apart from this exception and some examples in the more experimental poleis of Greater Greece, the Classical Doric temple type remained the "peripteros". Its perfection was a priority of artistic endeavour throughout the Classical period.

Temple of Zeus, Olympia (460 BC)

The canonical solution was found fairly soon by the architect Libon of Elis, who erected the Temple of Zeus atOlympia around 460 BC. With its 6 x 13 columns or 5 x 12 intercolumniations, this temple was designed entirely rationally. Its column bays (axis to axis) measured 16 foot, a triglyph + metope 8 foot, a "mutulus" plus the adjacent space ("via") 4 foot, the tile width of the marble roof was 2 foot. Its columns are powerful, with only a slight "entasis"; the echinus of the capitals is already nearly linear at 45°. All of the superstructure is affected by curvature. The "cella" measures exactly 3 x 9 column distances (axis to axis), its external wall faces are aligned with the axes of the adjacent columns.

Other canonical Classical temples

6 x 13 columns, the Classical proportion, is taken up by numerous temples, eg. the Temple of Apollo on Delos ("circa" 470 BC), the Temple of Hephaistos at Athens and the temple of Poseidon on Cape Sounion. [Gottfried Gruben: "Die Tempel der Griechen". Hirmer, München 2001 (5. edn.), p. 212-216.] A slight variation, with 6 x 12 columns or 5 x 11 intercolumniations occurs as frequently.

The Parthenon (450 BC)

The , erected shortly after the Parthenon, uses the same aesthetic and proportional principles, without adhering as closely to the 4:9 proportion. [Homer A. Thompson & Richard E. Wycherley : "The Agora of Athens. The History, Shape and Uses of an ancient City Center". The Athenian Agora. Vol 14, 1972, p. 140 ff.]

Late Classical and Hellenistic: changing proportions

In the 4th century BC, a few Doric temples were erected with 6 x 15 or 6 x 14 columns, probably referring to local Archaic predecessors, eg. the Temple of Zeus in Nemea [Frederick A. Cooper et al.: "The Temple of Zeus at Nemea. Perspectives and Prospects". Catalogue Benaki Museum Athens 1983. Athens 1983] and that of Athena in Tegea. [C. Dugas; J. Berchamans & M. Clemmensen: "Le sanctuaire d'Aléa Athéna à Tégée au IVe siècle". 1924.] Generally, Doric temples followed a tendency to become lighter in their superstructures. Columns became narrower, intercolumniations wider. This shows a growing adjustment to the proportion and weight of Ionic temples, mirrored by a prgressive tendency among Ionic temples to become somewhat heavier. In the light of this mutual influence it is not surprising that in the late 4th century BC temple of Zeus at Nemea, the front is emphasised by a "pronaos" two intercolumniations deep, while the "opisthodomos" is suppressed. [Frederick A. Cooper e.a.: "The Temple of Zeus at Nemea. Perspectives and Prospects". Ausstellungskatalog Benaki Museum Athen 1983. Athen 1983.] Frontality is a key featire of Ionic temples. The emphasis on the "pronaos" already occurred in the slightly older temple of Athena at Tegea, but there it was repeated in the "opisthodomos". Both temples continued the tendency towards more richly equipped interiors, in both cases with engaged or full columns of the Corinthian order.

The increasing reduction of the number of columns along the long sides, clearly visible on Ionic temples, is mirrored in Doric constructions. A small temple at Kournó has a peristasis of merely 6 x 7 columns, a stylobate of only 8 x 10 m and corners executed as pilasters towards the front [Hans Lauter: "Die Architektur des Hellenismus". Wiss. Buchges., Darmstadt 1986, S. 187. 195 Abb. 65. 66a.] . The peristasis of monumental Doric temples is merely hinted at here; the function as a simple canopy for the shrine of the sult statue is clear

Doric temples in Magna Graecia

Sicily and Southern Italy hardly participated in these developments. Here, most temple construction took place during the 6th and 5th centuries BC. [Dieter Mertens: "Städte und Bauten der Westgriechen. Von der Kolonisationszeit bis zur Krise um 400 vor Christus". Hirmer Verlag, München 2006.] Later, the Western Greeks showed a pronounced tendency to develop unusual architectural solutions, more or less unthinkable in the mother poleis of their colonies. For example, there are two examples of temples with uneven column numbers at the front, Temple of Hera I at Paestum [Dieter Mertens: "Der alte Heratempel in Paestum und die archaische Baukunst in Unteritalien". 1993.] and Temple of Apollo A at Metapontum [Dieter Mertens: "Städte und Bauten der Westgriechen. Von der Kolonisationszeit bis zur Krise um 400 vor Christus". Hirmer Verlag, München 2006, p. 157-158.] . Both temples had fronts of nine columns. The technical possibilities of the western Greeks, which had progressed beyond those in the motherland, permitted many deviations. For example, innovations regarding the construction of the entablature developed in the west allowed the spanning of much wider spaces than before, leading to some very deep "peristaseis" and broad "naoi". The "peristasis" often had a depth of two column distances, eg at Temple of Hera I, Paestum, and temples C, F and G at Selinus [Luca Giuliani: "Die archaischen Metopen von Selinunt." Zabern, Mainz 1979; Dieter Mertens: "Selinus I. Die Stadt und ihre Mauern". Zabern, Mainz 2003; Dieter Mertens: "Städte und Bauten der Westgriechen. Von der Kolonisationszeit bis zur Krise um 400 vor Christus". Hirmer Verlag, München 2006, p. 117-124, 227-228, 231-235.] , classifying them as "pseudodipteroi". The "opisthodomos" only played a subsidiary role, but did occur sometimes, eg. at the tenple of Poseidon in Paestum. Much more frequently, the temples included a separate room at the back end of the cella, entrance to which was usually forbidden, the "adyton". In some cases, the "adyton" was a free-standing structure within the cella, eg. temple G in Selinus. If possible, columns inside the cella were avoided, allowing for open roof constructions of up to 13 m width.

The largest such structure was the Olympieion of Akragas, an 8 x 17 column "peripteros", but in many regards an absolutely "un-Greek" structure, equipped with details such as engaged, figural pillars (Telamons), and a "peristasis" partially closed off by walls. [Dieter Mertens: "Städte und Bauten der Westgriechen. Von der Kolonisationszeit bis zur Krise um 400 vor Christus". Hirmer Verlag, München 2006, p. 198.] With external dimensions of 56 x 113 m, it was the largest Doric building ever to be completed. If the colonies showed remarkable independence and will to experiment in basic terms, they did so even more in terms of detail. For example, the lower surfaces of Doric "geisa" could be decorated with coffers instead of "mutuli".

Although a strong tendency to emphasize the front, eg. through the addition of ramps or stairs with up to eight steps (at Temple C in Selinus), or a "pronaos" depth of 3.5 column distances (temple of Apollo at Syracuse) [ see Dieter Mertens: "Städte und Bauten der Westgriechen. Von der Kolonisationszeit bis zur Krise um 400 vor Christus". Hirmer Verlag, München 2006, p. 104-110.] had been become a key principle of design, this was relativised by the broadening of column distances on the long sides, eg. Temple of Hera I at Paestum. Only in the colonies could the Doric corner conflict be ignored. If South Italian architects tried to solve it, they used a variety of solutions: broadening of the corner metopes or triglyphs, variation of column distance or metopes. In some cases, different solutions were used on the broad and narrow sides of the same building.

Ionic temples

Origins

For the early period, before the 6th century BC, the term Ionic temple can, at best, designate a temple in the Ionian areas of settlement. No fragments of architecture belonging to the Ionic order have been found from this time. Nonetheless, some early temples in the area already indicate the rational system that was to characterise the Ionic system later on, e.g. the Heraion II of Samos. [Hermann J. Kienast: "Die rechteckigen Peristasenstützen am samischen Hekatompedos". In: Ernst-Ludwig Schwandner (ed.): "Säule und Gebälk. Zu Struktur und Wandlungsprozeß griechisch-römischer Architektur". Bauforschungskolloquium in Berlin vom 16.-18. Juni 1994. Diskussionen zur Archäologischen Bauforschung. Bd. 6, 1996, p. 16-24.] Thus, even at an early point, the axes of the "cella" walls aligned with the column axes, whereas in Doric architecture, the external wall faces do so. The early temples also show no concern for the typical Doric feature of viewability from all sides, they regularly lack an "opisthodomos"; the "peripteros" only became widespread in the area in the 4th century BC. In contrast, from an early point, Ionic temples stress the front by using double porticos. Elongated "peristaseis" became a determining element. At the same time, the Ionic temples were chatacterised by their tendency to use varied and richly decorated surfaces, as well as the widespread use of light-shade contrasts.

Monumental Ionic temples

The Heraion of Samos

As soon as the Ionic order becomes recognisable in temple architecture, it is increased to monumental sizes. The temple in the Heraion of Samos, erected by Rhoikos around 560 BC, is the first known "dipteros", with outside dimensions of 52 x 105 m. [Christof Hendrich: "Die Säulenordnung des ersten Dipteros von Samos". Habelt, Bonn 2007.] A double portico of 8 x 21 columns enclosed the "naos", the back even had ten columns. The front used differing column distances, with a wider central opening. In proportion to the bottom diameter, the columns reached three times the height of a Doric counterpart. 40 flutings enriched the complex surface structure of the column shafts. Samian column bases were decorated with a sequence of horizontal flutings, but in spite of this playfulness they weighed 1,500 kg a piece. The capitals of this structure were probably still entirely of wood, as was the entablature. Ionic volute capitals survive from the outer "peristasis" of the later rebuilding by Polycrates. The columns of the inner "peristasis" had leaf decoration and no volutes.

Cycladic Ionic

In the Cyclades, there were early temples entirely built of marble. Volute capitals have not been found associated with these, but their marble entablatures belonged to the Ionic order. [Gottfried Gruben: "Naxos und Delos. Studien zur archaischen Architektur der Kykladen": In: "Jahrbuch des Deutschen Archäologischen Instituts". Vol. 112, 1997, p. 261–416.]

The Artemision of Ephesos

Roughly beginning with the erection of the older Artemision of " of ten or more steps was erected. Older Ionic temples normally lacked a specific visible substructure. This emphasised basis had to be balanced out be a heightened entablature, producing not only a visual contrast to, but also a major weight upon the slender columns.

Temple of Apollo at Didyma

The temple of Apollo at Didyma near Miletus, begun around 540 BC, was another "dipteros" with open internal courtyard [Peter Schneider: "Neue Funde vom archaischen Apollontempel in Didyma". In: Ernst-Ludwig Schwandner (Hrsg.): "Säule und Gebälk. Zu Struktur und Wandlungsprozeß griechisch-römischer Architektur". Bauforschungskolloquium in Berlin vom 16.-18. Juni 1994. Diskussionen zur Archäologischen Bauforschung. Vol. 6, 1996, p. 78-83.] The interior was structured with powerful pilasters, their rhythm reflecting that of the external "peristasis". The columns, with 36 flutings, were executed as "columnae caelatae" with figural decoration, like those at Ephesos. Construction ceased around 500 BC, but was restarted in 331 BC and finally completed in the 2nd century BC. The enormous costs involved may have been one of the reasons for the long period of construction. The building was the first Ionic temple to follow the Attic tradition of uniform column distances, the frontal diffentiation was not practised any more.

Temple of Athena Polias, Priene

Ionic "peripteroi" were usually somewhat smaller and shorter in their dimensions than Doric ones. E.g. the temple of Zeus at Labraunda had only 6 x 8 columns [Pontus Hellström - Thomas Thieme: "The temple of Zeus". In: "Labraunda - Swedish excavations and researches". Vol 1, 3. Lund 1982.] , the temple of Aphrodite in Samothrace only 6 x 9. [Ibrahim Hakan Mert: "Untersuchungen zur hellenistischen und kaiserzeitlichen Bauornamentik von Stratonikeia". Köln 1999, p 261-301 ( [http://deposit.ddb.de/cgi-bin/dokserv?idn=959749713&dok_var=d1&dok_ext=pdf&filename=959749713.pdf Online] ).] The temple of Athena Polias at Priene [Frank Rumscheid: "Untersuchungen zur kleinasiatischen Bauornamentik des Hellenismus". 1994, p 42-47.] , already considered in antiquity as the Classical example of a Ionic temple, has partially survived. It was the first monumental peripteros of Ionia, erected between 350 and 330 BC by Pytheos. It is based on a 6 x 6 foot grid (the exact dimensions of its plinths). The temple had 6 x 11 columns, i.e. a proportion of 5:10 or 1:2 intercolumnia. Walls and columns were aligned axially, according to Ionic tradition. The "peristasis" was of equal depth on all sides, eliminating the usual emphasis on the front, an "opisthodomos", integrated into the back of the cella, is the first proper example in Ionic architecture. The evident rational-mathematical aspect to the design suits Ionic Greek culture, with its strong tradition of natural philosophy. Pytheos was to be of major influence far beyond his lifetime. Hermogenes, who probably came from Priene, was a deserving successor and achieved the final flourish of Ionic architecture around 200 BC.

The Artemision of Magnesia

One of the projects led by Hermogenes was the Artemision of Magnesia on the Maeander, one of the first "pseudodipteroi". [Carl Humann: "Magnesia am Mäander". 1904, p 55; also see in: Wolfram Hoepfner & Ernst-Ludwig Schwandner (Eds.): "Hermogenes und die hochhellenistische Architektur." Internationales Kolloquium in Berlin vom 28. bis 29. Juli 1988 im Rahmen des XIII. Internationalen Kongresses für Klassische Archäologie. Mainz 1990; more generally: W. Hoepfner in: Wolfram Hoepfner & Ernst-Ludwig Schwandner (Eds.): "Hermogenes und die hochhellenistische Architektur". Internationales Kolloquium in Berlin vom 28. bis 29. Juli 1988 im Rahmen des XIII. Internationalen Kongresses für Klassische Archäologie. Mainz 1990, p. 2 ff. 30 ff.] (other early "pseudodipteroi" include the temple of Aphrodite at Messa on Lesbos, belonging to the age of Hermogenes or earlier [Hakan Mert: "Untersuchungen zur hellenistischen und kaiserzeitlichen Bauornamentik von Stratonikeia". Köln 1999, p. 26 ( [http://deposit.ddb.de/cgi-bin/dokserv?idn=959749713&dok_var=d1&dok_ext=pdf&filename=959749713.pdf Online] ).] , the temple of Apollo Sminthaios on Chryse [Ibrahim Hakan Mert: "Untersuchungen zur hellenistischen und kaiserzeitlichen Bauornamentik von Stratonikeia". Köln 1999, p. 26 ( [http://deposit.ddb.de/cgi-bin/dokserv?idn=959749713&dok_var=d1&dok_ext=pdf&filename=959749713.pdf Online] ).] and the temple of Apollo at Alabanda. [Frank Rumscheid: "Untersuchungen zur kleinasiatischen Bauornamentik". Bd. I. Zabern, Mainz 1994, p. 141-143.] The arrangement of the "pseudodipteros", omitting the interior row of columns while maintaining a "peristasis" with the width of two column distances, produces a massively broadened portico, comparable to the contemporaneous hall architecture. The grid of the temple of Magnesia was based on a 12 x 12 foot square. The "peristasis" was surrounded by 8 x 15 columns or 7 x 14 intercolumnia, i.e. a 1:2 proportion. The "naos" consisted of a "pronaos" of four column depths, a four column "cella", and a 2 column "opisthodomos". Above the architrave of the "peristasis", there was a figural frieze of 137 m length, depicting the amazonomachy. Above it lay the dentil, the Ionic "geison" and the "sima".

Attic Ionic

Although Athens and Attica were also ethnically Ionian, the Ionic order was of minor importance in this area. The Temple of Nike Aptera on the Acropolis, a small amphiprostyle temple completed around 420 BC, with Ionic columns on plinthless Attic bases, a triple-layered architrave and a figural frieze, but without the typical Ionic dentil, is notable. The east and north halls of the Erechtheion, completed in 406 BC, follow the same succession of elements.

Epidauros

An innovative Ionic temple was that of Asklepios in Epidaurus, one of the first of the "pseudoperipteros" type. This small ionic prostyle temple had engaged columns along the sides and back, the "peristasis" was thus reduced to a mere hint of a full portico facade. [Temple L in Epidauros; see Hans Lauter: "Die Architektur des Hellenismus". Wiss. Buchges., Darmstadt 1986, p. 189-190.]

Magna Graecia

There is very little evidence of Ionic temples in Magna Graecia. One of the few exceptions is the early Classical Temple D, an 8 x 20 columnn peripteros, at Metapontum. Its architect combined the dentil, typicalm of Asia Minor, with an Attic frieze, thus proving that the colonies were quite capable of partaking in the developments of the motherland. [See Dieter Mertens: "Der ionische Tempel von Metapont". In: "Mitteilungen des Deutschen Archäologischen Instituts. Römische Abteilung". Bd. 86, 1979, p. 103 ff.] . A small Ionic Hellenistic prostyle temple was found on the Poggetto San Nicola at Agrigento.

Corinthian temples

Beginnings

The youngest of the three Classical Greek orders, the Corinthian order came to be used for the external design of Greek temples quite late. After it had proved its adequacy, eg. on a mausoleum of at modern-day Belevi (near Ephesos), it appears to have found increasing popularity in the 2nd half of the 3rd century BC. Early examples probably include the Serapeum of Alexandria and a temple at Hermopolis Magna, both erected by Ptolemaios III. A small temple of Athena Limnastis at Messene, definitely Corinthian, is only attested through drawings by early travellers and very scarce fragments. It probably dates to the late 3rd century BC. [Ralf Schenk: "Der korinthische Tempel bis zum Ende des Prinzipats des Augustus". Internationale Archäologie 45, 1997, p. 16-21.]

Examples

Hellenistic Temple of Olympian Zeus, Athens

The first dateable and well-preserved presence of the Corinthian temple is the Hellenistic rebuilding of the Olympieion of Athens, planned and started between 175 and 146 BC. This mighty "dipteros" with its 110 x 44 m substructure and 8 x 20 columns was to be one of the largest Corinthian temples ever. Donated by Antiochus IV Epiphanes, it combined all elements of the asian/Ionic order with the Corinthian capital. Its Asian elements and its conception as a "dipteros" made the temple an exception in Athens. [See Renate Tölle-Kastenbein: "Das Olympieion in Athen". Böhlau, Köln 1994.]

Olba

Around the middle of the 2nd century BC, a 6 x 12 column Corinthian peripteros was built in Olba-Diokaisarea in Rugged Cilicia. [Theodora S. MacKay: "Olba in Rough Cilicia". 1968; Detlev Wannagat: "Neue Forschungen in Diokaisareia / Uzuncaburç, Bericht über die Arbeiten 2001-2004". In: "Archäologischer Anzeiger". 2005, p. 117-166.] Its columns, mostly still upright, stand on Attic bases without plinths, exceptional for the period. The 24 flutings of the columns are only indicated by facets in the lower third. Each of the Corinthian capitals is made of three separate parts, an exceptional form. The entablature of the temple was probably in the Doric order, as is suggested by fragments of "mutuli" scattered among the ruins. All of these details suggest an Alexandrian workshop, since Alexandria showed the greatest tendency to combine Doric entablatures with Corinthian capitals and to do without the plinth under Attic bases. [See Hildegard Schaaf: "Untersuchungen zu Gebäudestiftungen hellenistischer Zeit". 1992; Ralf Schenk: "Der korinthische Tempel bis zum Ende des Prinzipats des Augustus". Internationale Archäologie 45, 1997, p. 26-27; Detlev Wannagat: "Zur Säulenordnung des Zeustempels von Olba-Diokaisareia". In: "Olba II". First International Symposium on Cilician Archaeology, Mersin 1.-4.6. 1998, Mersin 1999, p. 355-368.]

Temple of Hekate at Lagina

A further plan option is shown by the temple of Hekate at Lagina, a small "pseudoperipteros" of 8 x 11 columns. [See Ulrich Junghölter: "Zur Komposition der Laginafriese und zur Deutung des Nordfrieses". 1989; Frank Rumscheid: "Untersuchungen zur kleinasiatischen Bauornamentik". Bd. I, 1994, p. 132 ff.; Ralf Schenk: "Der korinthische Tempel bis zum Ende des Prinzipats des Augustus". Internationale Archäologie 45, 1997, p. 28 ff.] Its architectural members are entirely in keeping with the Asian/Ionic canon. Its distinctive feature, a rich figural frieze, makes this building, erected around 100 BC, an architectural gem. Further late Greek temples in the Corinthian order are known eg. at Mylasa [Walter Voigtländer in: Adolf Hoffmann; Ernst-Ludwig Schwandner; Wolfram Höpfner & Gunnar Brands (eds.): "Bautechnik der Antike". Kolloquium Berlin 1990. Diskussionen zur Archäologischen Bauforschung. Bd. 5. 1991, p. 247-248; Ralf Schenk: "Der korinthische Tempel bis zum Ende des Prinzipats des Augustus". Internationale Archäologie 45, 1997, p. 37-39 (late 2nd century BC).] and, on the middle gymnasium terrace at Pergamon. [P. Schazmann: "Das Gymnasium". In: "Altertümer von Pergamon". Bd. VI. 1923, p. 40 ff.; Ralf Schenk: "Der korinthische Tempel bis zum Ende des Prinzipats des Augustus". Internationale Archäologie 45, 1997, p. 39-41.]

Distinctive uses of Corinthian temples, influence

The few Greek temples in the Corinthian order are almost always exceptional in form or ground plan and are initially usually an expression of royal patronage. The Corinthian order permitted a considerable increase of the material and technical effort invested in a building, which made its use attractive for the purposes of royals self-aggrandisement. The demise of the Hellenistic monarchies and the increasing power of Rome and her allies placed mercantile elites and sanctuary administrations in the positions of building sponsors. The construction of Corinthian temples became a typical expression of self-confidence and independence [See Ralf Schenk: "Der korinthische Tempel bis zum Ende des Prinzipats des Augustus". Internationale Archäologie 45, 1997, p. 41-47.] . As an element of Roman architecture, the Corinthian temple came to be widely distributed in all of the Graeco-Roman world, especially in Asia Minor, until the late Imperial period.

Bibliography

* Gottfried Gruben: "Die Tempel der Griechen". Hirmer, München 2001 (5. edn.), ISBN 3-777-48460-1
* Manfred Bietak (ed.): "Archaische Griechische Tempel und Altägypten". Österreichische Akademie der Wissenschaften, Wien 2001, ISBN 3-7001-2937-8
* Ralf Schenk: "Der korinthische Tempel bis zum Ende des Prinzipats des Augustus". Internationale Archäologie Vol. 45, 1997, ISBN 978-3-89646-317-3
* Dieter Mertens: "Der alte Heratempel in Paestum und die archaische Baukunst in Unteritalien". 1993.
* Wolfgang Müller-Wiener: "Griechisches Bauwesen in der Antike". C. H. Beck, München 1988, ISBN 3-406-32993-4
* Heiner Knell: "Architektur der Griechen: Grundzüge". Wiss. Buchges., Darmstadt 1988, ISBN 3-534-80028-1
* Hans Lauter: "Die Architektur des Hellenismus". Wiss. Buchges., Darmstadt 1986, ISBN 3-534-09401-8
* Werner Fuchs: "Die Skulptur der Griechen". Hirmer, München 1983 (3. edn.), ISBN 3-777-43460-4

ee also

*Art in ancient Greece
*Religion in ancient Greece
*Architecture of ancient Greece
*Classical order
*Greek Revival architecture

External links

* [http://home.uchicago.edu/~bdcline/AAM/html/Temples.html University of Chicago: Gallery with images of Greek Temples]
* [http://www.sitesandphotos.com/catalog/parent-144905.html Archaeology Image Bank, several thousand images of Greek Temples]

References

* John Pedley, "Sanctuaries and the Sacred in the Ancient Greek World" (Cambridge: Cambridge University Press, 2005), Pp. 272.
* A. Spawforth, "The Complete Greek Temples" (London: Thames & Hudson, 2006), Pp. 240
* Mary Emerson, "Greek Sanctuaries: An Introduction" (London: Bristol Classical Press, 2007), Pp. xii, 172.

ource of translation


Wikimedia Foundation. 2010.

Игры ⚽ Нужно решить контрольную?

Look at other dictionaries:

  • Temple — • The Latin form, templum, from which the English temple is derived, originally signified an uncovered area marked off by boundaries; especially the place marked off by the augurs to be excepted from all profane uses Catholic Encyclopedia. Kevin… …   Catholic encyclopedia

  • Temple of Isthmia — Temple of Isthmia, The Temple of Poseidon, located on the Isthmus of Corinth, about 10 miles east of the Ancient City. The site was originally found by Oscar Broneer in 1952 with excavations continuing until 1967. Between August 16th and November …   Wikipedia

  • Temple of Artemis — Coordinates: 37°56′59″N 27°21′50″E / 37.94972°N 27.36389°E / 37.94972; 27.36389 …   Wikipedia

  • Greek Revival architecture — Brandenburg Gate in Berlin, Germany. The Greek Revival was an architectural movement of the late 18th and early 19th centuries, predominantly in Northern Europe and the United States. A product of Hellenism, it may be looked upon as the last… …   Wikipedia

  • Temple of Hephaestus — Infobox Historic building name=Temple of Hephaestus/Theseion Ναός Ηφαίστου/Θησείο caption=Temple of Hephaestus, Athens: eastern face map type= location town=Athens location country=Greece architect= client= engineer= construction start date=449… …   Wikipedia

  • Temple — A temple (from the Latin word templum ) is a structure reserved for religious or spiritual activities, such as prayer and sacrifice, or analogous rites. A ‘’templum’’ constituted a sacred precinct as defined by a priest, or augur. It has the same …   Wikipedia

  • TEMPLE —    The Etruscan temple consisted of a high podium of stone, one to three cellae with or without wings, and a superstructure of wood dressed with terracottas. Good examples are found at Orvieto, Veii, and Tarquinia. The best examples of the… …   Historical Dictionary of the Etruscans

  • Temple of Zeus — The Temple of Zeus at Olympia is an ancient Greek pagan temple, dedicated to the chief of the gods, Zeus. Built in 470 456 BCE, it was the very model of the fully developed classical Greek temple of the Doric order. [http://traumwerk.stanford.edu …   Wikipedia

  • Greek Theatre (Los Angeles) — The Greek Theatre is a 5,700 seat amphitheater located at Griffith Park in Los Angeles, California. It was built in 1929, opening on September 29 of that year. The amphitheater s stage is modeled after a Greek temple.History The Greek Theatre,… …   Wikipedia

  • Temple of Neptune, Paestum — The Temple of Neptune, Paestum is a greek temple in Paestum, Campania, Italy, actually dedicated to the goddess Hera. It is part of the UNESCO World Heritage site …   Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”