Dyadic rational

Dyadic rational
Dyadic rationals in the interval from 0 to 1.

In mathematics, a dyadic fraction or dyadic rational is a rational number whose denominator is a power of two, i.e., a number of the form a/2b where a is an integer and b is a natural number; for example, 1/2 or 3/8, but not 1/3. These are precisely the numbers whose binary expansion is finite.

The inch is customarily subdivided in dyadic rather than decimal fractions; similarly, the customary divisions of the gallon into half-gallons, quarts, and pints are dyadic. The ancient Egyptians also used dyadic fractions in measurement, with denominators up to 1/64, using a notation based on the Eye of Horus (see, e.g., Curtis).

The set of all dyadic fractions is dense in the real line: any real number x can be arbitrarily closely approximated by dyadic rationals of the form \lfloor 2^i x \rfloor / 2^i. Compared to other dense subsets of the real line, such as the rational numbers, the dyadic rationals are in some sense a relatively "small" dense set, which is why they sometimes occur in proofs. (See for instance Urysohn's lemma.)

The sum, product, or difference of any two dyadic fractions is itself another dyadic fraction:

\frac{a}{2^b}+\frac{c}{2^d}=\frac{2^{d-b}a+c}{2^d} \quad (d\ge b)
\frac{a}{2^b}-\frac{c}{2^d}=\frac{2^{d-b}a-c}{2^d} \quad (d\ge b)
\frac{a}{2^b}-\frac{c}{2^d}=\frac{a-2^{b-d}c}{2^b} \quad (d< b)
\frac{a}{2^b}\times \frac{c}{2^d} = \frac{ a \times c}{2^{b+d}}.

However, the result of dividing one dyadic fraction by another is, in general, not a dyadic fraction. Thus, the dyadic fractions form a subring of the rational numbers Q. Algebraically, this subring is the localization of the integers Z with respect to the set of powers of two.

The surreal numbers are generated by an iterated construction principle which starts by generating all finite dyadic fractions, and then goes on to create new and strange kinds of infinite, infinitesimal and other numbers.

Dyadic solenoid

As an additive abelian group the dyadic rationals are the direct limit of infinite cyclic subgroups of the rational numbers,

\varinjlim \left\{2^{-i}\mathbb{Z}\mid i = 0, 1, 2, \dots \right\}

In the spirit of Pontryagin duality, there is a dual object, namely the inverse limit of the unit circle group under the repeated squaring map

\zeta\mapsto\zeta^2.

The resulting dual is a topological group D called the dyadic solenoid, an example of a solenoid group.

An element of the dyadic solenoid can be represented as an infinite sequence of complex numbers q0, q1, q2, ..., with the properties that each qi lies on the unit circle and that, for all i > 0, qi2 = qi-1. The group operation on these elements multiplies any two sequences componentwise.

As a topological space the dyadic solenoid is an indecomposable continuum.

See also

References


Wikimedia Foundation. 2010.

Игры ⚽ Нужен реферат?

Look at other dictionaries:

  • Dyadic Developmental Psychotherapy — is a treatment approach for families that have children with symptoms of emotional disorders, including Complex Trauma and disorders of attachment.[1] It was originally developed by psychologist Daniel Hughes as an intervention for children whose …   Wikipedia

  • Dyadic transformation — xy plot where x = x0 ∈ [0, 1] is rational and y = xn for all n. The dyadic transformation (also known as the dyadic map, bit shift map, 2x mod 1 map, Bernoulli map, doubling map or sawtooth… …   Wikipedia

  • Rational number — In mathematics, a rational number is any number that can be expressed as the quotient or fraction a/b of two integers, with the denominator b not equal to zero. Since b may be equal to 1, every integer is a rational number. The set of all… …   Wikipedia

  • Minkowski's question mark function — Minkowski question mark function. ?(x) is on the left and ?(x) x is on the right. In …   Wikipedia

  • Egyptian fraction — An Egyptian fraction is the sum of distinct unit fractions, such as frac{1}{2}+ frac{1}{3}+ frac{1}{16}. That is, each fraction in the expression has a numerator equal to 1 and a denominator that is a positive integer, and all the denominators… …   Wikipedia

  • List of mathematics articles (D) — NOTOC D D distribution D module D D Agostino s K squared test D Alembert Euler condition D Alembert operator D Alembert s formula D Alembert s paradox D Alembert s principle Dagger category Dagger compact category Dagger symmetric monoidal… …   Wikipedia

  • Binary numeral system — Numeral systems by culture Hindu Arabic numerals Western Arabic (Hindu numerals) Eastern Arabic Indian family Tamil Burmese Khmer Lao Mongolian Thai East Asian numerals Chinese Japanese Suzhou Korean Vietnamese …   Wikipedia

  • Non-analytic smooth function — In mathematics, smooth functions (also called infinitely differentiable functions) and analytic functions are two very important types of functions. One can easily prove that any analytic function of a real argument is smooth. The converse is not …   Wikipedia

  • Semi-membership — In mathematics and theoretical computer science, the semi membership problem for a set is the problem of deciding which of two possible elements is logically more likely to belong to that set; alternatively, given two elements of which exactly… …   Wikipedia

  • Uniformly hyperfinite algebra — In operator algebras, a uniformly hyperfinite, or UHF, algebra is one that is the closure, in the appropriate topology, of an increasing union of finite dimensional full matrix algebras. C* algebras A UHF C* algebra is the direct limit of an… …   Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”