Direct limit

Direct limit

In mathematics, a direct limit (also called inductive limit) is a colimit of a "directed family of objects". We will first give the definition for algebraic structures like groups and modules, and then the general definition which can be used in any category.

Contents

Formal definition

Algebraic objects

In this section objects are understood to be sets with a given algebraic structure such as groups, rings, modules (over a fixed ring), algebras (over a fixed field), etc. With this in mind, homomorphisms are understood in the corresponding setting (group homomorphisms, etc.).

Start with the definition of a direct system of objects and homomorphisms. Let \langle I,\le\rangle be a directed set. Let \{A_i : i\in I\} be a family of objects indexed by I\, and  f_{ij}: A_i \rightarrow A_j be a homomorphism for all i \le j with the following properties:

  1. f_{ii}\, is the identity of A_i\,, and
  2. f_{ik}= f_{jk}\circ f_{ij} for all i\le j\le k.

Then the pair \langle A_i,f_{ij}\rangle is called a direct system over I\,.

The underlying set of the direct limit, A\,, of the direct system \langle A_i,f_{ij}\rangle is defined as the disjoint union of the A_i\,'s modulo a certain equivalence relation \sim\,:

\varinjlim A_i = \bigsqcup_i A_i\bigg/\sim.

Here, if x_i\in A_i and x_j\in A_j, x_i\sim\, x_j if there is some k\in I such that f_{ik}(x_i) = f_{jk}(x_j)\,. Heuristically, two elements in the disjoint union are equivalent if and only if they "eventually become equal" in the direct system. An equivalent formulation that highlights the duality to the inverse limit is that an element is equivalent to all its images under the maps of the directed system, i.e. x_i\sim\, f_{ik}(x_i).

One naturally obtains from this definition canonical morphisms \phi_i: A_i\rightarrow A sending each element to its equivalence class. The algebraic operations on A\, are defined via these maps in the obvious manner.

An important property is that taking direct limits in the category of modules is an exact functor.

Direct limit over a direct system in a category

The direct limit can be defined in an arbitrary category \mathcal{C} by means of a universal property. Let \langle X_i, f_{ij}\rangle be a direct system of objects and morphisms in \mathcal{C} (same definition as above). The direct limit of this system is an object X\, in \mathcal{C} together with morphisms \phi_i: X_i\rightarrow X satisfying \phi_i =\phi_j \circ f_{ij}. The pair \langle X, \phi_i\rangle must be universal in the sense that for any other such pair \langle Y, \psi_i\rangle there exists a unique morphism  u:X\rightarrow Y making the diagram

DirectLimit-01.png

commute for all i, j. The direct limit is often denoted

X = \varinjlim X_i

with the direct system \langle X_i, f_{ij}\rangle being understood.

Unlike for algebraic objects, the direct limit may not exist in an arbitrary category. If it does, however, it is unique in a strong sense: given another direct limit X′ there exists a unique isomorphism X′ → X commuting with the canonical morphisms.

We note that a direct system in a category \mathcal{C} admits an alternative description in terms of functors. Any directed poset \langle I,\le \rangle can be considered as a small category \mathcal{I} where the morphisms consist of arrows i\rightarrow j if and only if i\le j. A direct system is then just a covariant functor \mathcal{I}\rightarrow \mathcal{C}.

General Definition

Let  \mathcal I and  \mathcal C categories. Let c_X: \mathcal I\rightarrow \mathcal C be a constant functor with fixed object  X\in \mathcal C . Define for every functor  F: \mathcal I\rightarrow \mathcal C the functor

 \lim_{\longrightarrow} F: \mathcal C \rightarrow \mathbf{Set}

which assigns to each  X\in \mathcal C the set Hom(F,cX) of natural transformations from F to cX. If  \lim_{\longrightarrow} F is representable, the representing object in  \mathcal C is called the direct limit of F and is also denoted by  \lim_{\longrightarrow }F .

If  \mathcal C is an abelian category where arbitrary (also infinite) direct sums of objects exists (this is Grothedieck's Axiom AB3). Then  \lim_{\longrightarrow} F is representable for every functor  F: \mathcal I\rightarrow \mathcal C and

 \lim_{\longrightarrow}: \mathrm{Hom}(\mathcal I, \mathcal C)\rightarrow \mathcal C, F\mapsto \lim_{\longrightarrow} F

is a right-exact additive functor of abelian categories.

Examples

  • A collection of subsets Mi of a set M can be partially ordered by inclusion. If the collection is directed, its direct limit is the union \bigcup M_i.
  • Let I be any directed set with a greatest element m. The direct limit of any corresponding direct system is isomorphic to Xm and the canonical morphism φm: XmX is an isomorphism.
  • Let p be a prime number. Consider the direct system composed of the groups Z/pnZ and the homomorphisms Z/pnZZ/pn+1Z which are induced by multiplication by p. The direct limit of this system consists of all the roots of unity of order some power of p, and is called the Prüfer group Z(p).
  • Let F be a C-valued sheaf on a topological space X. Fix a point x in X. The open neighborhoods of x form a directed poset ordered by inclusion (UV if and only if U contains V). The corresponding direct system is (F(U), rU,V) where r is the restriction map. The direct limit of this system is called the stalk of F at x, denoted Fx. For each neighborhood U of x, the canonical morphism F(U) → Fx associates to a section s of F over U an element sx of the stalk Fx called the germ of s at x.
  • Direct limits in the category of topological spaces are given by placing the final topology on the underlying set-theoretic direct limit.
  • Inductive limits are linked to projective ones via
\mathrm{Hom} (\varinjlim X_i, Y) = \varprojlim \mathrm{Hom} (X_i, Y).
  • Consider a sequence {An, φn} where An is a C*-algebra and φn : AnAn + 1 is a *-homomorphism. The C*-analog of the direct limit construction gives a C*-algebra satisfying the universal property above.

Related constructions and generalizations

The categorical dual of the direct limit is called the inverse limit (or projective limit). More general concepts are the limits and colimits of category theory. The terminology is somewhat confusing: direct limits are colimits while inverse limits are limits.

References


Wikimedia Foundation. 2010.

Игры ⚽ Поможем сделать НИР

Look at other dictionaries:

  • Direct limit of groups — In mathematics, a direct limit of groups is the direct limit of a direct system of groups. These are central objects of study in algebraic topology, especially stable homotopy theory and homological algebra. They are sometimes called stable… …   Wikipedia

  • Direct — may refer to: Direct current, a direct flow of electricity Direct examination, the in trial questioning of a witness by the party who has called him or her to testify Direct sum of modules, a construction in abstract algebra which combines… …   Wikipedia

  • Limit (mathematics) — This is an overview of the idea of a limit in mathematics. For specific uses of a limit, see limit of a sequence and limit of a function. In mathematics, the concept of a limit is used to describe the value that a function or sequence approaches… …   Wikipedia

  • Direct Energy — Type Energy retailer Industry Energy Founded 1985[1] or 1986 …   Wikipedia

  • direct effect — the doctrine in the law of the European Communities that states that a Community Act has direct effect when those who are subject to Community law are given a right. It applies to individuals and institutions. Persons who benefit from the right… …   Law dictionary

  • Direct methanol fuel cell — Direct methanol fuel cells or DMFCs are a subcategory of proton exchange fuel cells in which methanol is used as the fuel. Their main advantage is the ease of transport of methanol, an energy dense yet reasonably stable liquid at all… …   Wikipedia

  • Direct-EI LC-MS interface — is a simple coupling technique between liquid chromatography and mass spectrometry (LC MS) developed by Achille Cappiello and coworkers.[1] It is based on the direct and efficient introduction of a liquid effluent into an electron ionization (EI) …   Wikipedia

  • Direct Star — Création 1er septembre 2010 Propriétaire Groupe Canal+ (60 %) Groupe Bolloré (40 %) Slogan « LA chaîne …   Wikipédia en Français

  • Direct bonding — describes a wafer bonding process without any additional intermediate layers. The bonding process is based on chemical bonds between two surfaces of any material possible meeting numerous requirements.[1] These requirements are specified for the… …   Wikipedia

  • Direct Poker — est un tournoi télévisé de poker Texas Hold em No limit hebdomadaire diffusé sur la chaîne française Direct 8 et présenté par Alexandre Delpérier. Direct Poker a été créée par Patrice Laffont qui a animé l émission de 2006 à 2009. L animateur y… …   Wikipédia en Français

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”