Pentagrid converter

Pentagrid converter

The pentagrid converter is a radio receiving valve (vacuum tube) with five grids used as the frequency mixer stage of a superheterodyne radio receiver.

Grids of a 12SA7GT Pentagrid converter showing all 5 grids.

The pentagrid was part of a line of development of valves that were able to take an incoming RF signal and change its frequency to a fixed intermediate frequency which was then amplified, and detected in the remainder of the receiver circuitry. The device was generically referred to as a frequency changer or just mixer.



The first devices designed to change frequency in the manner described above seem to have been developed by the French who simply put two grids into what would otherwise have been an ordinary triode valve (the bi-grille). Although technically a four component electrode device, neither the term tetrode nor the tetrode valve as we know it today had yet appeared. Each grid was able to accept one of the incoming signals and the non-linearity of the device produced the sum and difference frequencies. The valve would have been very inefficient but, most importantly, the capacitive coupling between the two grids would have been very large. It would therefore have been quite impossible to prevent the signal from one grid coupling out of the other. At least one reference claims that the bi-grille was self oscillating, but this has not been confirmed.

When Edwin Armstrong invented the superheterodyne receiver in 1918, although the tetrode had been invented a couple of years earlier, he nevertheless employed only triodes in his design. Armstrong employed a pair of triodes as his mixer stage. One operated in a conventional oscillator circuit, but he was able to employ the other as a mixer by coupling the oscillator signal into the mixer's cathode, and the received signal to the grid. The sum and difference frequencies were then available in the mixer's anode (or plate) circuit. Once again, the problem of coupling between the circuits would be ever present.

Shortly after Armstrong invented the superhet, a triode mixer stage design was developed that not only mixed the incoming signal with the local oscillator, but the same valve doubled as the oscillator. This was known as the autodyne mixer. Early examples had difficulty oscillating across the frequency range because the oscillator feedback was via the first intermediate frequency transformer primary tuning capacitor which was too small to give good feedback. Also keeping the oscillator signal out of the antenna circuit was difficult.

The invention of the tetrode demonstrated the idea of screening electrodes from each other by using additional earthed (grounded) grids (at least as far as the signal was concerned). In 1926, Philips invented a technique of adding yet another grid to combat the secondary emission that the tetrode suffered from. All the ingredients for the pentagrid were now in place.

The Pentagrid

Circuit symbol of a heptode

The development of the pentagrid or heptode valve was a novel development in the mixer story. The idea was to produce a single valve that not only mixed the oscillator signal and the received signal and produced its own oscillator signal at the same time but, importantly, did the mixing and the oscillating in different parts of the same valve.

The invention of the device at first sight doesn't seem to be obscure, but it would appear that it was developed in both America and the United Kingdom, more or less at the same time. However, the UK device is different to its American counterpart.

It is known that Donald G. Haines of RCA applied for a patent for the pentagrid on 28 March 1933 (subsequently granted on 29 March 1939) under US patent number 2,148,266. The pentagrid also featured in a UK patent (GB426802) granted on 10 April 1935. However, the Ferranti company of Great Britain entered the valve business with the first known UK produced pentagrid, the VHT4 late in 1933 (though it must have been in development, and would certainly have existed as a prototype well before this time).

The pentagrid proved to be a much better mixer. Since the oscillator circuit was more or less self contained, good feedback for reliable oscillation across the frequency range was easy to obtain. Some manufacturers that had adopted the autodyne mixer converted some, if not all, of their designs to pentagrid mixers.

What was the goal to develop a reliable self oscillating mixer? The reasons were to differ from the UK to America. The UK radio manufacturers had to pay a royalty of £1 per valve holder to the British Valve Association to cover use of their members' patent rights. Further, they dictated than not more than one electrode structure could be contained in a single envelope (which would have evaded the royalty - at least in part). The Americans appeared to be driven by the desire to produce a low cost 'every expense spared' design which was to lead to the All American Five. By making the mixer self oscillate, the necessity of providing a separate oscillator valve is avoided. The All American Five was to use a pentagrid converter from when it first appeared in 1934, right up until valves became obsolete when transistors took over.

In the UK, the five grids operated thus. Grid 1 acted as the oscillator grid in conjunction with grid 2 which acted as its anode. Grid 4 accepted the incoming signal with the remaining two grids, 3 and 5 connected together (usually internally) which acted as screen grids to screen the anode, grid 4 and grid 2 from each other. Because grid 2 was a 'leaky' anode in that it allowed part of the modulated electron stream through, the oscillator was coupled into the mixing section of the valve. In fact, in some designs, grid 2 consisted of just the support rods, the actual grid wire itself being omitted.

In America, the configuration was different. Grid 1 acted as the oscillator grid as before, but in this case, grids 2 and 4 were connected together (again usually internally). Grid 2 functioned as both a screen and the oscillator anode, in this case the grid wire had to be present to provide the screening. Grid 3 accepted the incoming signal. Grid 4 screened this from the anode, and grid 5 was a suppressor grid to suppress secondary emission. This configuration limited the oscillator design to one where the oscillator 'anode' was operated from the HT+ (B+) rail. This was often accomplished by using a Hartley Oscillator circuit and taking the cathode to the tap on the coil.

It will be noted that the UK version would have had significant secondary emission and would also have had a tetrode kink. This was exploited in providing the non linearity necessary to produce good sum and difference signals. The American devices although having no secondary emission due to the suppressor grid, nevertheless were able to get the required non linearity by biasing the oscillator such that the valve was overdriven. The American version was also a little more sensitive because the grid that accepted the signal was closer to the cathode increasing the amplification factor.

The pentagrid converter in either guise operated extremely well, but it suffered from the limitation that a strong signal was able to 'pull' the oscillator frequency away from a weaker signal. This was not considered a major problem in broadcast receivers where the signals were likely to be strong, but it became a problem when trying to receive weak signals that were close to strong signals. Some short wave radios managed quite satisfactorily with these devices. Special high frequency versions appeared after World War II for the 100 MHz FM bands. Examples are the 6SB7Y (1946) and the 6BA7 (1948). The pulling effect had a beneficial side effect in that it gave a degree of automatic tuning.

Another disadvantage was that in spite of the presence of the screen grids, the electron beam, modulated by the oscillator electrodes, still had to pass through the signal grid, and coupling of the oscillator into the signal circuit was inevitable. The American Federal Communication Commission (FCC) started requiring radio manufacturers to certify that their products avoided this interference under Part 15 of their rules. In the UK the Postmaster General (who was responsible for radio licensing), laid down a set of stringent rules concerning radio interference.

The Hexode

Circuit symbol of a hexode

It may come as a surprise that the Hexode was actually developed after the heptode or pentagrid. It was developed in Germany as a mixer but was designed from the start to be used with a separate triode oscillator. Thus the grid configuration was grid 1, signal input; grids 2 and 4 screen grids (connected together - again, usually internally) and grid 3 was the oscillator input. The device had no suppressor grid. A major advantage was that by using grid 1 as the signal input grid, the device was more sensitive to weak signals.

It was not long before they put the triode and hexode structures in the same glass envelope - by no means a new idea. The triode grid was usually internally connected to the hexode grid 3, but this practice was dropped in later designs when the mixer section operated as a straight IF amplifier in AM/FM sets when operating on FM, the mixing being carried out in a dedicated FM frequency changing section.

The UK manufacturers were initially unable to use this type of mixer because of the BVA prohibition on multiple structures (and indeed separate valves because of the levy). Indeed one UK company, MOV, successfully enforced the cartel rules against the German Lissen company in 1934 when they attempted to market a radio in the UK which had the triode-hexode mixer.

Following pressure from the UK manufacturers, the BVA were compelled to relax the rules and the UK started to adopt triode-hexode mixers. The Mullard ECH35 was a popular choice.

One company, Osram, made an ingenious move. One of their popular pentagrid converter designs was the MX40, initially marketed in 1934. They put on sale in 1936, the X41 triode-hexode frequency changer. The clever bit was that the X41 was a direct plug in pin compatible replacement for the MX40. Thus a pentagrid radio could be easily converted to a triode-hexode without any other circuit modifications.

It is interesting to note, that America never really adopted the triode-hexode and it was seldom used, even though the 6K8 triode-hexode was available to manufacturers in 1938.

In some designs, a suppressor grid was added to produce yet another heptode design. Mullard's ECH81 became popular with the move to miniature 9 pin valves.

The Octode

Although not strictly a pentagrid (in that it does not have 5 grids), this device nevertheless operates on the pentagrid principle. It resulted simply from the addition of a suppressor grid to the UK version of the pentagrid heptode. This was done mainly to reduce the power consumption for use in radio sets operated by dry batteries that were becoming increasingly popular.

In North America, the only octode manufactured was the 7A8. Introduced by Sylvania in 1939 (and used mostly by Philco), this valve was the product of adding a suppressor grid to type 7B8, which was the loctal version of type 6A7. Adding the suppressor allowed Sylvania to lower the current of the 6.3 volt heater from 300 milliamperes to 150 milliamperes while maintaining the same conversion transconductance (550 microsiemens). This allowed Philco to use this valve in every line of radio throughout the 1940s.

One octode design worthy of mention was the Philips EK3 Octode. This was designated as a 'beam octode'. The novel part about the design was that grids 2 and 3 were constructed as beam forming plates. This was done in such a way that Philips claimed that the oscillator electron beam and the mixer electron beams were separated as much as possible and thus the pulling effect was minimised. No information is available as to the degree of success.

The Pentode

The use of a pentode would seem an unlikely choice for a frequency converter. However, during the Great Depression, many American radio manufacturers used pentode types 6C6, 6D6, 77 and 78 in their lowest priced AC/DC receivers because they were cheaper than pentagrid type 6A7. In these circuits, the suppressor (grid 3) acted as the oscillator grid.

One UK company, Mazda, produced a triode-pentode frequency changer, the AC/TP. Designed for low cost AC radios, the device was deliberately designed to allow strong signals to pull the oscillator without the risk of radiating the oscillator signal from the aerial. The cathode was common to both sections of the valve. The cathode was connected to a secondary coil on the oscillator coil and thus coupled the oscillator into the pentode mixer section, the signal being applied to grid 1 in the conventional manner. The AC/TP was one of the AC/ range of valves designed for low cost radios. They were considered durable for their time (even the AC/TP frequency changer, which was normally problematic). Any AC/ valves encountered today are likely to be brand new as service shops stocked up on spares which were seldom required.


In order to distinguish between the two versions of the heptode or pentagrid, manufacturers data often describes them as 'heptode of the Hexode type' for a heptode without a screen grid, and a 'heptode of the octode type', where a screen grid is present.

Significant types

North American types

  • For battery-powered home and portable radios
    • 1A6 - Dual-tetrode pentagrid used in 1930s battery-operated radios. Has 2.0 volt filament powered by 2 volt storage battery or, with ballast valve, 3 volt "air cell." Due to low filament current (60 ma), this valve is not used in circuits that tune shortwave frequencies above 10 meghertz. Octal version: 1D7-G
    • 1C6 - Like type 1A6, but with a higher filament current (120 ma) that allows it to tune frequencies up to 20 megahertz. Octal version: 1C7-G
    • 1A7-GT - Re-engineered version of types 1A6 and 1D7-G, designed for use in portable AC/DC/Dry-cell battery radios introduced in 1938. Has 1.4 volt, 50 milliampere filament.
    • 1B7-GT - Re-engineered version of types 1C6 and 1C7-G, designed for use in dry-cell battery radios with shortwave bands. Has 1.4 volt, 100 milliampere filament which makes it incompatible with 50 milliampere AC/DC filament strings.
    • 1LA6 (loctal) and later 1L6 (7-pin miniature) – battery pentagrid for Zenith Trans-Oceanic short wave radio.
    • 1LC6 - Similar to type 1LA6, but with higher conversion transconductance.
    • 1U6 - Nearly identical to type 1L6, but with a 1.4 volt, 25 milliampere filament that makes it incompatible with 50 milliampere AC/DC filament strings.
    • 1E8 - Subminiature "triode-pentode" pentagrid type
    • 1V6 - Subminiature triode-pentode non-pentagrid converter
    • 1R5 - "Triode-pentode" pentagrid used in many portable radios from 1941 to the beginning of the transistor radio era.
  • For AC or AC/DC powered radios
    • 2A7 and 6A7 – The first of the RCA pentagrids 1933, "dual-tetrode" design.
    • 6A8 and 12A8 - Octal versions of types 2A7 and 6A7. Type 12A8 was used in the first 150 milliampere AC/DC models.
    • 7B8 and 14B8 - Loctal versions of types 6A8 and 12A8.
    • 7Q7 and 14Q7 - Loctal versions of types 6SA7 and 12SA7.
    • 6BE6 and 12BE6 - Seven-pin miniature versions of types 6SA7 and 12SA7.
    • 6J8-G - American triode-heptode, 1938.
    • 6K8 and 12K8 – American Triode-Hexode, 1938.
    • 6SB7Y (octal), 6BA7 and 12BA7 (9-pin miniatures) – Pentagrids for VHF use 1946
    • 7A8 – the only octode produced in America by Sylvania, 1939. Used mostly in Philco radios.
    • 18FX6 - Low-current (100 ma heater) version of type 12BE6.
  • For equipment powered by 12-volt car batteries (all have 12.6 volt heater, screen and plate voltages)
    • 12FA6 - Car radio version of 12BE6.
    • 12GA6 - Similar to type 12FA6, but with lower conversion transconductance.
    • 12FX8 - Triode-heptode converter for car radios. Screen and both plate voltages rated at 12.6 volts.

European types

  • VHT1 – Ferranti pentagrid 1933.
  • MX40 – Osram pentagrid 1934.
  • X41 – Osram Triode Hexode 1936 – Plug-in replacement for MX40
  • ECH35 – Mullard Triode-Hexode
  • EK3 – Beam octode produced by Philips.
  • ECH81 – Mullard Triode-Heptode (of the hexode type) as well the 6И1П Soviet version.
  • DK96 – Mullard / Philips Heptode for Battery Portables. 1955+
  • 15A2, 15D1 and 15D2 - British (Brimar) dual-triode pentagrids similar to American type 6A7. Home receiver type 15A2 has a 4.0 volt, 650 mA heater. Car radio types 15D1 and 15D2 have 13.0 volt heaters with 200 mA and 150 mA current ratings, respectively.

This list is by no means exhaustive.

The All American Five used a number of valve types in its history and the reader is referred to that article for a listing of the different types used.

Other mixer valves

  • 6L7 - Superheterodyne mixer used in high-end console receivers of the late 1930s and early 1940s. (Most commonly used by Zenith.) Grid 1 is control grid (remote cutoff). Grid 3 is local oscillator signal injector. Local oscillator is always a separate valve, often a 6C5. Due to low relatively conversion transconductance (350 µmhos), this valve is always fed by at least one tuned RF amplifier.
  • 1612 - Audio mixer version of type 6L7. Both control grids (1 and 3) are sharp-cutoff. Engineered to be less likely to develop microphonics.
  • 1LB6 - Superheterodyne mixer for battery-operated radios. Like type 6L7, works with a separate oscillator and tuned RF amplifier. Can be used with AC/DC/Dry-cell battery power supplies.
  • 1j37b - Dual control grid Pentode mixer or Mixer/Oscillator for battery-operated radios. Also good for AGC. Russian Military 1959 to 1991
  • FM-1000 - Combined oscillator and quadrature FM detector for early post-war Philco radios. Manufactured only by Sylvania with either their markings or Philco markings.
  • 6CS6 - Heptode with two sharp-cutoff control grids (1 and 3). Same basing as type 6BE6. Used as sync separator in television sets. Also: 3CS6, 4CS6, 12CS6.
  • 6BY6 - Similar to type 6CS6, but with higher transconductance. Also: 3BY6.
  • 12EG6 - Dual sharp-cutoff control grid mixer (grids 1 and 3). Has 12.6 volt plate and screen voltage. Designed for use with audio equipment powered by a car battery.


  • Valve Manuals
  • Other Books
    • Sibley, Ludwell, "Tube Lore", 1996
    • Stokes, john W, "70 Years of Radio Tubes and Valves" 1997
    • Thrower, Keith, "History of the British Radio Valve to 1940."

External links

Wikimedia Foundation. 2010.

Игры ⚽ Нужно решить контрольную?

Look at other dictionaries:

  • pentagrid converter — noun A compound thermionic valve used in superheterodyne radio receivers …   Wiktionary

  • pentagrid — ˈpentəˌgrid adjective Etymology: penta + grid : having five grids a pentagrid converter …   Useful english dictionary

  • List of vacuum tubes — This is a list of vacuum tubes or thermionic valves. Before the advent of semiconductor devices, hundreds of tube types were used in consumer and industrial electronics; today only a few types are still used in specialized applications. Contents… …   Wikipedia

  • Vacuum tube — This article is about the electronic device. For experiments in an evacuated pipe, see free fall. For the transport system, see pneumatic tube. Modern vacuum tubes, mostly miniature style In electronics, a vacuum tube, electron tube (in North… …   Wikipedia

  • All American Five — The All American Five was a mass produced, superheterodyne radio receiver with five vacuum tubes first designed and produced in the USA in the 1930s.The radio was called the All American Five because the design represented the majority of radios… …   Wikipedia

  • Superheterodyne receiver — A 5 tube superheterodyne receiver made in Japan around 1955 In electronics, a superheterodyne receiver (sometimes shortened to superhet) uses frequency mixing or heterodyning to convert a received signal to a fixed intermediate frequency, which… …   Wikipedia

  • Tube socket — Left to right: octal (top and bottom view), loctal, and miniature (top and side view) sockets. An early transistor socket and an IC socket are included for comparison. Tube sockets are electrical sockets into which vacuum tubes (also known as… …   Wikipedia

  • Frequency changer — A frequency changer or frequency converter is an electronic device that converts alternating current (AC) of one frequency to alternating current of another frequency. The device may also change the voltage, but if it does, that is incidental to… …   Wikipedia

  • Light-emitting diode — LED redirects here. For other uses, see LED (disambiguation). Light emitting diode Red, pure green and blue LEDs of the 5mm diffused type Type Passive, optoelectronic Working principle Electr …   Wikipedia

  • Resistor — A typical axial lead resistor Type Passive Working principle Electrical resistance Invented Ge …   Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”