- Ear training
-
Ear training or aural skills is a skill by which musicians learn to identify, solely by hearing, pitches, intervals, melody, chords, rhythms, and other basic elements of music. The application of this skill is analogous to taking dictation in written/spoken language. Ear training may be contrasted with sight-singing, which is analogous to reading aloud in language. Ear-training is typically a component of formal musical training.
Contents
Functional pitch recognition
Functional pitch recognition involves identifying the function or role of a single pitch in the context of an established tonic. Once a tonic has been established, each subsequent pitch may be classified without direct reference to accompanying pitches. For example, once the tonic G has been established, listeners may recognize that the pitch D plays the role of the dominant in the key of G. No reference to any other pitch is required to establish this fact.
Many musicians use functional pitch recognition in order to identify, understand, and appreciate the roles and meanings of pitches within a key. To this end, scale-degree numbers or movable-do solmization (do, re, mi, etc.) can be quite helpful. Using such systems, pitches with identical functions (the key note or tonic, for example) are associated with identical labels (1 or do, for example).
Functional pitch recognition is not the same as fixed-do solfege, e.g. do, re, mi, etc. Functional pitch recognition emphasizes the role of a pitch with respect to the tonic, while fixed-do solfege symbols are labels for absolute pitch values (do=C, re=D, etc., in any key). In the fixed-do system (used in the conservatories of the Romance language nations, e.g. Paris, Madrid, Rome, as well as the Juilliard School and the Curtis Institute in the USA), solfege symbols do not describe the role of pitches relative to a tonic, but rather actual pitches. In the movable-do system, there happens to be a correspondence between the solfege symbol and a pitch's role. However there is no requirement that musicians associate the solfege symbols with the scale degrees. In fact, musicians may utilize the movable-do system to label pitches while mentally tracking intervals to determine the sequence of solfege symbols.
Functional pitch recognition has several strengths. Since a large body of music is tonal, the technique is widely applicable. Since reference pitches are not required, music may be broken up by complex and difficult to analyze pitch clusters, for example, a percussion sequence, and pitch analysis may resume immediately once an easier to identify pitch is played, for example, by a trumpet—no need to keep track of the last note of the previous line or solo nor any need to keep track of a series of intervals going back all the way to the start of a piece. Since the function of pitch classes is a key element, the problem of compound intervals with interval recognition is not an issue—whether the notes in a melody are played within a single octave or over many octaves is irrelevant.
Functional pitch recognition has some weaknesses. Music with no tonic or ambiguous tonality[1] does not provide the frame of reference necessary for this type of analysis. When dealing with key changes, a student must know how to account for pitch function recognition after the key changes: retain the original tonic or change the frame of reference to the new tonic. This last aspect in particular, requires an ongoing real-time (even anticipatory) analysis of the music that is complicated by modulations and is the chief detriment to the movable-do system. The problem is analogous to simultaneously mentally diagraming text that is read aloud (analyzing the parts of speech) - an impractical approach which is not well-suited for [unrehearsed] sight-singing.
Interval recognition
Interval recognition is also a useful skill for musicians: in order to determine the notes in a melody, a musician must have some ability to recognize intervals. Some music teachers teach their students relative pitch by having them associate each possible interval with the first two notes of a popular song.[2] However, others have shown that such familiar-melody associations are quite limited in scope, applicable only to the specific scale-degrees found in each melody.[3] Here are some examples for each interval:
In addition, there are various systems (including solfeggio, sargam, and numerical sight-singing) that assign specific syllables to different notes of the scale. Among other things, this makes it easier to hear how intervals sound in different contexts, such as starting on different notes of the same scale.
The essential goal for the advanced student of music is to gain a sense of each tone's place in the scale and its function in the key, learning to hear its position, tendency, and relationship to the other pitches with the "mind's ear." Solfege systems and mnemonic melodies are tools used to help realize this goal.
Ear training is a very important skill for timpanists and is used in tuning.
Chord recognition
Complementary to recognizing the melody of a song is hearing the harmonic structures that support it. Musicians often practice hearing different types of chords and their inversions out of context, just to hear the characteristic sound of the chord. They also learn chord progressions to hear how chords relate to one another in the context of a piece of music.
Rhythm recognition
One way musicians practice rhythms is by breaking them up into smaller, more easily identifiable sub-patterns. For example, one might start by learning the sound of all the combinations of four eighth notes and eighth rests, and then proceed to string different four-note patterns together.
Another way to practice rhythms is by muscle memory, or teaching rhythm to different muscles in the body. One may start by tapping a rhythm with the hands and feet individually, or singing a rhythm on a syllable (e.g. "ta"). Later stages may combine keeping time with the hand, foot, or voice and simultaneously tapping out the rhythm, and beating out multiple overlapping rhythms.
A metronome may be used to assist in maintaining accurate tempo.
Timbre recognition
Each type of musical instrument has a characteristic sound quality that is largely independent of pitch or loudness. Some instruments have more than one timbre, e.g. the sound of a plucked violin is different from the sound of a bowed violin. Some instruments employ multiple manual or embouchure techniques to achieve the same pitch through a variety of timbres. If these timbres are essential to the melody or function, as in shakuhachi music, then pitch training alone will not be enough to fully recognize the music. Learning to identify and differentiate various timbres is an important musical skill that can be acquired and improved by training.
Transcription
Music teachers often recommend transcribing recorded music as a way to practice all of the above, including recognizing rhythm, melody and harmony. The teacher may also perform short compositions, with the student listening and transcribing the piece onto paper in a practice known as dictation.
Software training methods
Accurate identification and reproduction of musical intervals, scales, chords, rhythms, and other aspects of ear training often can require a great deal of practice. Exercises involving identification often require a knowledgeable partner to play the questions and validate the answers. Software specialized for music theory can remove the need for a partner, customize the training to the users needs and accurately track scores and progress. University music departments often license commercial software for their students such as EarMaster,[4] Auralia (Ear Training Software)[5][6][7] and MacGAMUT,[8] allowing them to track and manage student scores on a computer network. A variety of free software also exists both as browser based applications and downloadable executables. For example, free and open source software under the GPL can provide many comparable features to popular proprietary products.[citation needed] The majority of ear training software are MIDI based, allowing the user to customize the instruments that play and even accept input from MIDI compatible devices such as electronic keyboards. TrainEar is a recent browser-based ear trainer specifically for helping associate musical intervals to songs.[9] Ear-training applications are also available for mobile phones; the iTunes AppStore has several "apps" for the iPhone and iPod Touch devices.
See also
References
- ^ For the cognitive foundations of atonality, see Humphries, Lee. “Atonality, Information, and the Politics of Perception”, Enclitic, Vol. III, No. 1 (Spring, 1979).
- ^ Mayfield, Connie E. (2002). Theory Essentials, Volume I: An Integrated Approach to Harmony, Ear Training, and Keyboard Skills. New York: Schirmer. ISBN 0-53-457231-6.
- ^ Rogers, Michael (1983): "Beyond Intervals: The Teaching of Tonal Hearing," Journal of Music Theory Pedagogy, (6):18-34
- ^ Plattsburgh State - Dr. Drew Waters
- ^ http://www.risingsoftware.com/auralia/ Published by Rising Software
- ^ Teaching Music With Technology
- ^ Dr. Micah Everett - ULM Division of Music - Aural Skills Course Information
- ^ Augustana College Music Theory courses
- ^ VCU Music Theory
Further reading
- Karpinski, Gary S. (2000). Aural Skills Acquisition : The Development of Listening, Reading, and Performing Skills in College-Level Musicians. Oxford University Press US. ISBN 978-0-19-511785-1.
- Prosser, Steve (2000). Essential Ear Training for the Contemporary Musician. Berklee Press. ISBN 0-634-00640-1.
- Friedmann, Michael L. (1990). Ear Training for Twentieth-Century Music. Yale University Press. ISBN 0-300-04536-0.
- Karpinski, Gary S. (2007). Manual for Ear Training and Sight Singing. Norton. ISBN 978-0393976632.
- Karpinski, Gary S. (2006). Anthology for Sight Singing. Norton. ISBN 978-0393973822.
External links
- MusicTheory.net
- EarMaster - Ear Training Software - Ear Training Interactive Software including Jazz exercises
- Teoria.com
- Trainear.com
- Solfege
- IWasDoingAllRight.com - Ear Training w/ Jazz Exercises
- LenMus - An open source software for music theory
Categories:
Wikimedia Foundation. 2010.