Shuttle-Derived Heavy Lift Launch Vehicle

Shuttle-Derived Heavy Lift Launch Vehicle
Artist impression of the Shuttle-Derived HLV concept

The Shuttle-Derived Heavy Lift Launch Vehicle, also known as the High Confidence Heavy Lift Launch Vehicle (or even variations of the "Side Mount Launch Vehicle" or "HLV" or "Not-Shuttle C") is an alternate launch vehicle proposal for the NASA Constellation program. It was first presented on June 17, 2009 by John Shannon, NASA's Shuttle Program manager, to the Augustine Commission which is tasked to review NASA's human spaceflight program.

It is based on the Shuttle-C concept which has been the subject of various studies since the 1980s. Derived from currently used Space Shuttle hardware, i.e. an Shuttle-Derived Launch Vehicle (SDLV), it is proposed to replace the winged Orbiter from the Space Shuttle stack with a simple non-winged side-mounted payload carrier. The designs of the Space Shuttle's External Tank (ET) and the four-segment Shuttle Solid Rocket Boosters (SRBs) would be reused.

According to NASA's John Shannon the HLV can be developed within 412 years until the first manned flight occurs. The development program should cost about US$ 6.6 billion,[1] which is only about 20% of the costs currently estimated for the Ares I and Ares V vehicle development.

Following President Obama 2010 space policy speech at Kennedy Space Center and the NASA Authorization Act of 2010 another HLV program, the Space Launch System, which is also Shuttle-derived, has been selected to replace the Constellation launch vehicles, with the development commencing immediately and to be completed by 2016.[citation needed]



An artist's conception of a Shuttle-C launching at night

An unmanned side-mounted concept of the Space Shuttle named Shuttle-C was the subject of various concepts that were investigated between 1984 and 1995.[2] After the Space Shuttle Columbia accident a two-year industry study was prepared in 2004 and 2005 to further investigate the concept in order to replace the Space Shuttle. The Exploration Systems Architecture Study (ESAS) in 2005 also investigated a Shuttle-C option for Project Constellation, however again only in an unmanned version. All these concepts included the side-mounted carrier to be an autonomous spacecraft which would detach from the External Tank after main engine cut-off similarly to the Space Shuttle. Some of the studies included the reuseability of the Space Shuttle Main Engines on this side-mounted carrier. None of the concepts involved in ascent fairing separation.

The Shuttle-C concept as a cargo only option was not funded in the 1980s and 1990s due to NASA's budgetary constraints. The 2004–2005 industry study provided an updated proposal, which was looked at by ESAS but was ultimately deemed inferior to the Ares I and Ares V option. Crewed side-mounted Shuttle-C concepts were not looked at all in ESAS.

The HLV proposal presented by John Shannon on June 17, 2009 is partly based on the original Shuttle-C proposal but differs considerably from it, mainly due to not using the side-mounted carrier as a separate spacecraft which detaches from the ET and due to proposing to also carry crews on the HLV, not just cargo. The team involved in analysing and designing the HLV design at NASA include about 60 NASA engineers headed by Rick Manella.[3]

HLV specifications

The HLV is proposed to be a 4,600,000 pounds (2,100,000 kg) vehicle at liftoff with two 4-segment Space Shuttle Solid Rocket Boosters weighing about 2,600,000 pounds (1,200,000 kg) providing a total thrust of 5,900,000 pounds-force (26 MN) at sea level, with the currently used Space Shuttle External Tank weighing about 1,660,000 pounds (750,000 kg) in a fueled stage and a propulsion and payload carrier side-mounted to the vehicle.

A diagram of the Shuttle-Derived Heavy Lift Launch Vehicle, Block I configuration

This side-mounted carrier includes a boattail carrying the propulsion elements which include 3 Space Shuttle Main Engines weighing about 57,000 pounds (26,000 kg) in total and the 7.5 metres (25 ft) diameter payload carrier with a separable fairing weighing 51,000 pounds (23,000 kg). The basic vehicle does not require an upper stage. Orbit circularization for missions to lower Earth orbit or trans-lunar injection burns for missions to the Moon or other destinations outside of Earth orbit are provided by the payload which detaches from the HLV after the main ET fuel is depleted.[4]

The only completely new hardware development required for the HLV is the side-mounted carrier. All other components used on the HLV are currently in use with the Space Shuttle. According to John Shannon's proposal the first several flights (up to 6 flights) of the vehicle will reuse spare parts of the current Space Shuttle fleet and salvage functioning hardware from the orbiters, including existing avionics modules, the Flight Software and the Space Shuttle Main Engines (SSMEs) (Block I flights). Virtually no change to the current Space Shuttle infrastructure, from the Vehicle Assembly Building to the External Tank barge to the launch pads is required.

Upper stage

Although technically not part of the HLV, the proposal envisions that the upper stage which is attached to the payload and rests in the payload fairing for launch shall be a J-2X engine currently being developed for the Ares I launch vehicle. It provides nearly 300,000 pounds-force (1.3 MN) (vacuum) and has a specific impulse (Isp) of 448 sec. Alternatively The United Launch Alliance has proposed that their Dual Thrust Axis (Lunar) Lander (DTAL) could fit in a side mount payload shroud. The United Launch Alliance proposed ACE 41 and ACE 71 upper stage/fuel depot could also fit inside a side mount payload shroud and the ACE 71 at 75 metric tons (83 short tons) is well within the side mount shuttle derived vehicles payload capacity.[5] This could eliminate the need for evolving the directly shuttle derived vehicle when combined with a fuel depots architecture.


The HLV's 4-segment SRBs deliver a specific impulse (Isp) of 267 sec and a thrust of 5,900,000 pounds-force (26 MN) and burn for about 155 seconds. The SSMEs shall be flown at 104.5% and deliver a specific impulse (Isp) of 452 sec and 1,500,000 pounds-force (6.7 MN) (vacuum) and burn for about 500 seconds (depending on the mission profile). The payload mass for different missions are as follows:[6]

  • Block I vehicle without an upper stage - 79 metric tons (170,000 lb) (gross) and 71 metric tons (160,000 lb) (net) to a 120 nautical miles (220 km) × 120 nautical miles (220 km) reference orbit (28.5°) from Kennedy Space Center
  • Block II cargo vehicle with an upper stage (mass of upper stage not included) - 90 metric tons (200,000 lb) (gross) and 81 metric tons (180,000 lb) (net) to a 120 nautical miles (220 km) × 120 nautical miles (220 km) reference orbit (28.5°) from Kennedy Space Center
  • Block II crew vehicle with an upper stage (mass of upper stage not included) - 92 metric tons (200,000 lb) (gross) and 83 metric tons (180,000 lb) (net) to a 120 nautical miles (220 km) × 120 nautical miles (220 km) reference orbit (28.5°) from Kennedy Space Center
  • Block II lunar missions: 39 metric tons (86,000 lb) to TLI (gross) with the lunar lander and 35 metric tons (77,000 lb) to TLI (net)[4] from Kennedy Space Center.

Mission profile

In contrast to prior proposals of Shuttle-C, except for the 4-segment SRBs no part of the vehicle is recoverable and reusable. The HLV uses a different flight profile than the Space Shuttle because no loads on wings have to be considered. The payload fairing 23,000 pounds (10,000 kg) is jettisoned after 185 seconds into the flight at about 57 nautical miles (106 km) altitude in order to improve payload mass of the vehicle. The used SSMEs are not reused and thus can be simplified, but will have to be produced for each vehicle (unlike the Shuttle). For lunar missions, the HLV proposal envisions suborbital staging at 30 nautical miles (56 km) × 120 nautical miles (220 km) of the vehicle to increase mass through TLI (trans-lunar injection) with two burns of the upper stage (a suborbital burn and an additional TLI burn).

Lunar mission architecture

Lunar mission scenario with the HLV, a lunar lander and the Orion spacecraft

While the HLV is designed to provide crew and cargo missions to the ISS, its primary aim is to replace the Ares I – Ares V lunar architecture. The rudimentary mission architecture presented by John Shannon uses a pure Lunar Orbit Rendezvous profile. Two HLVs are launched for the completion of one mission. The first HLV is launched with the lunar lander and immediately places the lunar lander on a trans-lunar injection path. The lunar lander can have a net mass of 35 metric tons after TLI and by itself inserts into a low lunar orbit (LLO). According to John Shannon's presentation in LLO the lunar lander will weigh about 28 metric tons (after burning fuel to get there).[6]

In a second launch, the crew on the Orion spacecraft is launched on an HLV and also immediately propelled to trans-lunar injection. The 20 metric ton Orion spacecraft will however remain attached to the upper stage which inserts the Orion spacecraft into low lunar orbit where it docks with the lunar lander.

Growth options

The NASA presentation shows that the HLV has limited growth options to take more payloads into space. While 5-segment SRBs can be used on the vehicle, they will require significant re-engineering of the vehicle and will only yield 7 metric tons more to lower Earth orbit. Other growth options include an upgrade of the SSME to 106% or 109% thrust level and a switch from the J2-x upper engine to an air-startable SSME.[4]

See also

  • Review of United States Human Space Flight Plans Committee
  • Jupiter (rocket family)


External links

Wikimedia Foundation. 2010.

Игры ⚽ Нужна курсовая?

Look at other dictionaries:

  • launch vehicle — Aerospace. a rocket used to launch a spacecraft or satellite into orbit or a space probe into space. [1955 1960] * * * Rocket system that boosts a spacecraft into Earth orbit or beyond Earth s gravitational pull. A wide variety of launch vehicles …   Universalium

  • Shuttle-Derived Launch Vehicle — The Shuttle Derived Launch Vehicle, or simply Shuttle Derived Vehicle (SDV), is a term describing one of a wide array of concepts that have been developed for creating space launch vehicles from the components, technology and/or infrastructure of …   Wikipedia

  • Earth Return Vehicle — The Earth Return Vehicle (ERV) forms a part of the Mars Direct humans to Mars mission concept first developed by Doctor Robert Zubrin and David Baker in the early 1990s. cite book |author=Glen Holden; Hanlon, Michael |authorlink= |editor= |others …   Wikipedia

  • Vehicle Assembly Building — Infobox nrhp name = Vehicle Assembly Building caption = Aerial view of the Vehicle Assembly Building at Kennedy Space Center. location = Brevard County, Florida USA nearest city = Merritt Island lat degrees = 28 lat minutes = 35 lat seconds =… …   Wikipedia

  • DIRECT — For other uses, see Direct (disambiguation). For the rockets proposed as part of the DIRECT architecture, see Jupiter (rocket family). DIRECT is a proposed alternative heavy lift launch vehicle architecture supporting NASA s Vision for Space… …   Wikipedia

  • Orion (spacecraft) — Infobox Spacecraft Name = Orion Caption = Orion logo designed by Michael Okuda Organization = NASA Major Contractors = Lockheed Martin Bus = Mission Type = Crew Exploration Vehicle Flyby Of = Satellite Of = Earth, Moon, Asteroid, Mars (possibly)… …   Wikipedia

  • Space Shuttle — STS redirects here. For other uses, see STS (disambiguation). This article is about the NASA Space Transportation System vehicle. For the associated NASA STS program, see Space Shuttle program. For other shuttles and aerospace vehicles, see… …   Wikipedia

  • Space Shuttle Solid Rocket Booster — The Space Shuttle Solid Rocket Boosters (SRBs) are the pair of large solid rockets used by the Space Shuttle during the first two minutes of powered flight. They are located on either side of the orange external propellant tank. Each SRB produces …   Wikipedia

  • Space Shuttle external tank — A Space Shuttle External Tank (ET) is the component of the Space Shuttle launch vehicle that contains the liquid hydrogen fuel and liquid oxygen oxidizer. During lift off and ascent it supplies the fuel and oxidizer under pressure to the three… …   Wikipedia

  • Space Shuttle Columbia — Columbia OV 102 Space Shuttle Columbia launches on STS 109(HST 3B)to repair the Hubble Space telescope.This was the final sucessful mission of Columbia before STS 107 OV designation OV 102 Country …   Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”