- Polycrystalline silicon
-
Polycrystalline silicon, also called polysilicon, is a material consisting of small silicon crystals. It differs from single-crystal silicon, used for electronics and solar cells, and from amorphous silicon, used for thin film devices and solar cells.
Contents
Single crystalline vs polycrystalline silicon
In single crystal silicon, the crystalline framework is homogenous, which can be recognized by an even external colouring.[1] In single crystal silicon, also called monocrystal, the crystal lattice of the entire sample is continuous and unbroken with no grain boundaries. Large single crystals are exceedingly rare in nature and can also be difficult to produce in the laboratory (see also recrystallisation). In contrast, in an amorphous structure the order in atomic positions is limited to short range.
Polycrystalline and paracrystalline phases (see Polycrystal) are composed of a number of smaller crystals or crystallites. Polycrystalline silicon (or semicrystalline silicon, polysilicon, poly-Si, or simply "poly") is a material consisting of multiple small silicon crystals. Polycrystalline cells can be recognized by a visible grain, a “metal flake effect”. Semiconductor grade (also solar grade) polycrystalline silicon is converted to "single crystal" silicon – meaning that the randomly associated crystallites of silicon in "polycrystalline silicon" are converted to a large "single" crystal. Single crystal silicon is used to manufacture most Si-based microelectronic devices. Polycrystalline silicon can be as much as 99.9999% pure.[2] Ultra-pure poly is used in the semiconductor industry, starting from poly rods that are five to eight feet in length. In microelectronic industry (semiconductor industry), poly is used both at the macro-scale and micro-scale (component) level. Single crystals are grown using the Czochralski process, float-zone and Bridgman techniques.
Polycrystalline silicon components
Polysilicon is a key component for integrated circuit and central processing unit manufacturers such as AMD and Intel. At the component level, polysilicon has long been used as the conducting gate material in MOSFET and CMOS processing technologies. For these technologies it is deposited using low-pressure chemical-vapour deposition (LPCVD) reactors at high temperatures and is usually heavily doped n-type or p-type.
More recently, intrinsic and doped polysilicon is being used in large-area electronics as the active and/or doped layers in thin-film transistors. Although it can be deposited by LPCVD, plasma-enhanced chemical vapour deposition (PECVD), or solid-phase crystallization (SPC) of amorphous silicon in certain processing regimes, these processes still require relatively high temperatures of at least 300 °C. These temperatures make deposition of polysilicon possible for glass substrates but not for plastic substrates. The deposition of polycrystalline silicon on plastic substrates is motivated by the desire to be able to manufacture digital displays on flexible screens. Therefore, a relatively new technique called laser crystallization has been devised to crystallize a precursor amorphous silicon (a-Si) material on a plastic substrate without melting or damaging the plastic. Short, high-intensity ultraviolet laser pulses are used to heat the deposited a-Si material to above the melting point of silicon, without melting the entire substrate. The molten silicon will then crystallize as it cools. By precisely controlling the temperature gradients, researchers have been able to grow very large grains, of up to hundreds of micrometers in size in the extreme case, although grain sizes of 10 nanometers to 1 micrometer are also common. In order to create devices on polysilicon over large-areas however, a crystal grain size smaller than the device feature size is needed for homogeneity of the devices. Another method to produce poly-Si at low temperatures is metal-induced crystallization where an amorphous-Si thin film can be crystallized at temperatures as low as 150C if annealed while in contact of another metal film such as aluminium, gold, or silver.
Polysilicon has many applications in VLSI manufacturing. One of its primary uses is as gate electrode material for MOS devices. A polysilicon gate's electrical conductivity may be increased by depositing a metal (such as tungsten) or a metal silicide (such as tungsten silicide) over the gate. Polysilicon may also be employed as a resistor, a conductor, or as an ohmic contact for shallow junctions, with the desired electrical conductivity attained by doping the polysilicon material.
One major difference between polysilicon and a-Si is that the mobility of the charge carriers of the polysilicon can be orders of magnitude larger and the material also shows greater stability under electric field and light-induced stress. This allows more complex, high-speed circuity to be created on the glass substrate along with the a-Si devices, which are still needed for their low-leakage characteristics. When polysilicon and a-Si devices are used in the same process this is called hybrid processing. A complete polysilicon active layer process is also used in some cases where a small pixel size is required, such as in projection displays.
Solar panel and applications
Main article: Solar panelPolycrystalline silicon is also a key component of solar panel construction. Growth of the photovoltaic solar industry is limited by the supply of the polysilicon material.[3] For the first time, in 2006, over half of the world's supply of polysilicon is being used for production of renewable electricity solar power panels.[4] Only twelve factories are known to produce solar-grade polysilicon in 2008. Monocrystalline silicon is higher priced and more efficient than multicrystalline.
Deposition methods
Polysilicon deposition, or the process of depositing a layer of polycrystalline silicon on a semiconductor wafer, is achieved by pyrolyzing silane (SiH4) at 580 to 650 °C. This pyrolysis process releases hydrogen.
Polysilicon layers can be deposited using 100% silane at a pressure of 25–130 Pa (0.2 to 1.0 Torr) or with 20–30% silane (diluted in nitrogen) at the same total pressure. Both of these processes can deposit polysilicon on 10–200 wafers per run, at a rate of 10–20 nm/min and with thickness uniformities of ±5%. Critical process variables for polysilicon deposition include temperature, pressure, silane concentration, and dopant concentration. Wafer spacing and load size have been shown to have only minor effects on the deposition process. The rate of polysilicon deposition increases rapidly with temperature, since it follows Arrhenius behavior, that is deposition rate = A·exp(–qEa/kT) where q is electron charge and k is the Boltzmann constant. The activation energy (Ea) for polysilicon deposition is about 1.7 eV. Based on this equation, the rate of polysilicon deposition increases as the deposition temperature increases. There will be a minimum temperature, however, wherein the rate of deposition becomes faster than the rate at which unreacted silane arrives at the surface. Beyond this temperature, the deposition rate can no longer increase with temperature, since it is now being hampered by lack of silane from which the polysilicon will be generated. Such a reaction is then said to be 'mass-transport-limited.' When a polysilicon deposition process becomes mass-transport-limited, the reaction rate becomes dependent primarily on reactant concentration, reactor geometry, and gas flow.
When the rate at which polysilicon deposition occurs is slower than the rate at which unreacted silane arrives, then it is said to be surface-reaction-limited. A deposition process that is surface-reaction-limited is primarily dependent on reactant concentration and reaction temperature. Deposition processes must be surface-reaction-limited because they result in excellent thickness uniformity and step coverage. A plot of the logarithm of the deposition rate against the reciprocal of the absolute temperature in the surface-reaction-limited region results in a straight line whose slope is equal to –qEa/k.
At reduced pressure levels for VLSI manufacturing, polysilicon deposition rate below 575 °C is too slow to be practical. Above 650 °C, poor deposition uniformity and excessive roughness will be encountered due to unwanted gas-phase reactions and silane depletion. Pressure can be varied inside a low-pressure reactor either by changing the pumping speed or changing the inlet gas flow into the reactor. If the inlet gas is composed of both silane and nitrogen, the inlet gas flow, and hence the reactor pressure, may be varied either by changing the nitrogen flow at constant silane flow, or changing both the nitrogen and silane flow to change the total gas flow while keeping the gas ratio constant.
Polysilicon doping, if needed, is also done during the deposition process, usually by adding phosphine, arsine, or diborane. Adding phosphine or arsine results in slower deposition, while adding diborane increases the deposition rate. The deposition thickness uniformity usually degrades when dopants are added during deposition.
Upgraded metallurgical-grade silicon
Upgraded metallurgical-grade (UMG) silicon (also known as UMG-Si) solar cell is being produced as a low cost alternative to polysilicon created by the Siemens process. UMG greatly reduces impurities in a variety of ways that require less equipment and energy than the Siemens process.[5] UMG is about 99% pure which is three or more orders of magnitude less pure and about 10 times less expensive than polysilicon ($1.70 to $3.20 per kg from 2005 to 2008 compared to $40 to $400 per kg for polysilicon). It has the potential to provide nearly-as-good solar cell efficiency at 1/5 the capital expenditure, half the energy requirements, and less than $15/kg.[6]
In 2008 several companies were touting the potential of UMG in 2010, but the credit crisis greatly lowered the cost of polysilicon and several UMG producers put plans on hold.[7][8] The Siemens process will remain the dominant form of production for years to come due to more efficiently implementing the Siemens process. GT Solar claims a new Siemens process can produce at $27/kg and may reach $20/kg in 5 years. GCL-Poly expects production costs to be $20/kg by end of 2011.[9] Elkem Solar estimates their UMG costs to be $25/kg, with a capacity of 6,000 tonnes by the end of 2010. Calisolar expects UMG technology to produce at $12/kg in 5 years with boron at 0.3 ppm and phosphorus at 0.6 ppm.[10] At $50/kg and 7.5 g/W, module manufacturers spend $0.37/W for the polysilicon. For comparison, if a CdTe manufacturer pays spot price for tellurium ($420/kg in April 2010) and has a 3 micron thickness, their cost would be 10 times less, $0.037/Watt. At 0.1 g/W and $31/ozt for silver, polysilicon solar producers spend $0.10/W on silver.[11]
Q-Cells, Canadian Solar, and Calisolar have used Timminco UMG. Timminco is able to produce UMG-Si with 0.5 ppm boron for $21/kg but were sued by shareholders because they had expected $10/kg.[12] RSI and Dow Corning have also been in litigation over UMG-Si technology.[13]
Manufacturers
Capacity
Polysilicon manufacturing market is in a very fast growth mode. According to Digitimes in July 2011, the total polysilicon production in 2010 was 209,000 tons and first-tier suppliers account for 64% of the market while China-based polysilicon firms have 30% of market share. The total production is likely to increase 37.4% to 281,000 tons by end of 2011.[14] With high spot prices in 2008/2009 and lack of available material, many companies announced additional capacities for the coming years. Established producers (mentioned below) expand their capacities, additionally newcomers – especially from Asia – are moving into this market. Even long-time players in the field had difficulties recently to ramp-up new plants. It is yet unclear which companies will be able to produce at costs low enough to be profitable after the steep drop in spot-prices of the last months.[15][16] Leading producer capacities:
- Hemlock Semiconductor (2010: 36 kt) [17] USA. $3 billion expansion mulled in addition to $1.2 billion expansion due in 2012.
- Wacker Chemie (2011: 32 kt, Jan 2012: 42kt, Jan 2014: 67 kt)[18][19] Germany.
- GCL-Poly (2010: 21 kt, Jan 2012: 46 kt )[20] Hong Kong.
- OCI (June 2010: 17 kt, Dec 2010: 27 kt, Jan 2012: 42 kt, Oct 2012: 62 kt)[21][22] South Korea.
- Renewable Energy Corporation ASA (REC) (2010: 17kt)[23] Norway.
- LDK Solar (2010: 15kt)[24] China.
- Tokuyama (2009: 8 kt, Jan 2013: 11 kt, 2015: 31kt[25])[26][27] Japan.
- MEMC Electronic Materials (2010: 8 kt, Jan 2013: 18 kt)[28][29] USA.
- Hankook Silicon (2011: 3.2 kt, 2013: 14.5 kt)[30]
- Nitol Solar, (2011: 5 kt, Jan 2011), Russia[31]
- Mitsubishi Polysilicon (2008: 4.3 kt)[32]
- Sumitomo Titanium (now Osaka Titanium) (2008: 4.2 kt)
- Daqo, (2011: 4.3kt, under construction 3kt), China[34]
- Beijing Lier High-temperature Materials Co, (2012: 5kt)[35]
- Qatar Solar Technologies, at Ras Laffan, announced an 8,000 mt facility for start in 2013.[36]
Price
Prices of polysilicon are often divided into two categories, contract and spot prices. While in booming installation times, price rally occurs in polysilicon. Not only spot prices surpass contract prices in the market; but it is also hard to acquire enough polysilicon. Buyers will accept down payment and long term agreements to acquire a large enough volume of polysilicon. On the contrary, spot prices will be below contract prices once the solar PV installation is in a down trend. In late 2010, booming installation brought up the spot prices of polysilicon. In the first half of 2011, prices of polysilicon kept strong owing to the FIT policies of Italy. The solar PV price survey and market research firm, PVinsights.,[37] reported that the prices of polysilicon might be dragged down by lack of installation in the second half of 2011.[38]
See also
- Bulk
- Cadmium telluride
- Low-cost solar cell
- Metallurgical grade silicon
- Nanocrystalline silicon
- Polycrystal
- Photovoltaic cells
- Photovoltaic module
- Wafer (electronics)
References
- ^ Solar ABC
- ^ Kolic, Y (1995). "Electron powder ribbon polycrystalline silicon plates used for porous layer fabrication". Thin Solid Films 255: 159. doi:10.1016/0040-6090(94)05644-S.
- ^ The Wall Street Journal, A Shortage Hits Solar Power. April 29, 2006.
- ^ Photovoltaics: Getting Cheaper
- ^ Is Upgraded Metallurgical Grade Silicon The Only Hope For Manufacturers of Photovoltaic Solar Cells? – GLG News. Glgroup.com (2008-05-20). Retrieved on 2011-04-02.
- ^ Dow Corning stopped UMG Solar Grade Silicon Production. GUNTHER Portfolio (2010-04-29). Retrieved on 2011-04-02.
- ^ Dow Corning stopped UMG Solar Grade Silicon Production. GUNTHER Portfolio (2010-04-29). Retrieved on 2011-04-02.
- ^ Press Release. Timminco. Retrieved on 2011-04-02.
- ^ http://www.solarserver.com/solar-magazine/solar-news/current/kw49/oci-aims-to-become-worlds-largest-polysilicon-producer-with-27000mty-expansion.html
- ^ http://www.bernreuter.com/fileadmin/user_upload/samples/SWE_6-2010_Solar_Silicon_Conference.pdf
- ^ http://www.virtualmetals.co.uk/pdf/FBNSB0610.pdf
- ^ The Who's Who of Solar Silicon Production, Companies, Technologies, Cost, Capacities, Global Perspectives through 2012
- ^ Solar Grade Litigation: Dow Corning vs. RSI Silicon. GUNTHER Portfolio. Retrieved on 2011-04-02.
- ^ http://www.digitimes.com/news/a20110718PD215.html
- ^ Commerzbank Equity Resarch, Robert Schramm, Lauren Licuanan: Feedback form Solar Silicon Conference. 28. April 2010
- ^ Citigroup Global Markets, Timothy Lam: Asia Solar View – May 2010, 3. May 2010
- ^ Hemlock Hemlock
- ^ Presseportal Wacker Chemie Kapazität Polysilicon
- ^ http://www.chemeurope.com/en/news/131384/wacker-expands-polysilicon-production-in-burghausen-and-nuenchritz.html
- ^ http://www.pv-tech.org/news/gcl_poly_claims_polysilicon_cost_down_to_us22.5_per_kilogram_wafer_capacity
- ^ OCI Company Ltd.
- ^ http://www.solarbuzz.com/industry-news/oci-invests-16-billion-expansion-polysilicon-plant
- ^ REC Group
- ^ LDK Solar
- ^ http://www.solarserver.com/solar-magazine/solar-news/current/2011/kw19/tokuyama-corporation-to-construct-new-polysilicon-plants-in-japan-and-malaysia.html
- ^ http://www.tokuyama.co.jp/eng/company/business/specialtyproducts/electronic.html
- ^ http://www.tokuyama.co.jp/eng/ir/report/briefing/pdf/2011mar_2ndQ_setsumeikai_e.pdf
- ^ MEMC – About MEMC
- ^ http://www.chemicalonline.com/article.mvc/Samsung-Fine-Chemicals-And-MEMC-Sign-0001
- ^ http://www.solarserver.com/solar-magazine/solar-news/current/2011/kw15/hankook-silicon-achieves-3200-mty-polysilicon-production-at-yesou-korea-plant.html
- ^ Nitol polysilicon production comes on line, RT, 2011-01-05
- ^ http://www.greenrhinoenergy.com/solar/industry/ind_01_silicon.php
- ^ http://www.greenrhinoenergy.com/solar/industry/ind_01_silicon.php
- ^ http://news.businessweek.com/article.asp?documentKey=1376-LNWOBG1A74E901-18V2TMP81AU917V753QK4RH4QD
- ^ http://www.bloomberg.com/news/2011-07-12/beijing-lier-plans-1-4-billion-yuan-polysilicon-project-in-henan.html
- ^ http://www.gulf-times.com/site/topics/article.asp?cu_no=2&item_no=462158&version=1&template_id=57&parent_id=56 Gulf Times Ras Laffan to get $1bn polysilicon plant
- ^ PVinsights
- ^ [Price cut of solar PV supply chain spreads and the price of poly-silicon might be dragged down by others
External links
- Alan Joch (November 10, 2006). "Sand Trap: Will the silicon shortage stunt the solar industry’s growth?". Plenty Magazine. http://plentymag.com/features/2006/11/sand_trap.php.
Categories:- Semiconductor materials
- Crystals
- Silicon solar cells
Wikimedia Foundation. 2010.