Single crystal

Single crystal
A huge KDP crystal grown from a seed crystal in a supersaturated aqueous solution at LLNL which is to be cut into slices and used on the National Ignition Facility for frequency doubling and tripling.

A single crystal or monocrystalline solid is a material in which the crystal lattice of the entire sample is continuous and unbroken to the edges of the sample, with no grain boundaries. The absence of the defects associated with grain boundaries can give monocrystals unique properties, particularly mechanical, optical and electrical, which can also be anisotropic, depending on the type of crystallographic structure. These properties, in addition to making them precious in some gems, are industrially used in technological applications, especially in optics and electronics.

Because entropic effects favor the presence of some imperfections in the microstructure of solids, such as impurities, inhomogeneous strain and crystallographic defects such as dislocations, perfect single crystals of meaningful size are exceedingly rare in nature, and are also difficult to produce in the laboratory, though they can be made under controlled conditions. On the other hand, imperfect single crystals can reach enormous sizes in nature: several mineral species such as beryl, gypsum and feldspars are known to have produced crystals several metres across.

The opposite of a single crystal is an amorphous structure where the atomic position is limited to short range order only. In between the two extremes exist polycrystalline , which is made up of a number of smaller crystals known as crystallites, and paracrystalline phases.

Contents

Uses

Semiconductor industry

Single crystal silicon is used in the fabrication of semiconductors. On the quantum scale that microprocessors operate on, the presence of grain boundaries would have a significant impact on the functionality of field effect transistors by altering local electrical properties. Therefore, microprocessor fabricators have invested heavily in facilities to produce large single crystals of silicon.

Optics

A single-crystal quartz bar grown by the hydrothermal method

Materials engineering

Another application of single crystal solids is in materials science in the production of high strength materials, such as turbine blades.[1] Here, the absence of grain boundaries gives a significant increase in physical strength, and more importantly greater resistance to creep.

Electrical conductors

Single crystal copper has better conductivity than polycrystalline copper.[2] As of 2009, no single crystal copper is manufactured on a large scale industrially, but methods of producing very large individual crystal sizes for copper conductors are exploited for high performance electrical applications. These can be considered meta-single crystals with only a few crystals per metre of length.

In research

The detailed study of the crystal structure of a material by techniques such as Bragg diffraction and helium atom scattering is much easier with monocrystals. They may be grown for this purpose, even when the material is otherwise only needed in polycrystalline form.

Manufacture

In the case of silicon and metal single crystal fabrication the techniques used involve highly controlled and therefore relatively slow crystallization.

Specific techniques to produce large single crystals (aka boules) include the Czochralski process and the Bridgman technique. Other less exotic methods of crystallization may be used, depending on the physical properties of the substance, including hydrothermal synthesis, sublimation, or simply solvent based crystallization.

A different technology to create single crystalline materials is called epitaxy. As of 2009, this process is used to deposit very thin (micrometre to nanometer scale) layers of the same or different materials on the surface of an existing single crystal. Applications of this technique lie in the areas of semiconductor production, with potential uses in other nanotechnological fields and catalysis.

See also

References

  1. ^ Crown jewels - These crystals are the gems of turbine efficiency Article on single crystal turbine blades memagazine.com
  2. ^ Cho, Yong Chan; Seunghun Lee, Muhammad Ajmal, Won-Kyung Kim, Chae Ryong Cho, Se-Young Jeong, Jeung Hun Park, Sang Eon Park, Sungkyun Park, Hyuk-Kyu Pak, and Hyoung Chan Kim (March 22, 2010). "Copper Better than Silver: Electrical Resistivity of the Grain-Free Single-Crystal Copper Wire". Crystal Growth & Design 10: 2780–2784. doi:10.1021/cg1003808. http://pubs.acs.org/doi/abs/10.1021/cg1003808. Retrieved 1 June 2011. 

Further reading


Wikimedia Foundation. 2010.

Игры ⚽ Поможем написать курсовую

Look at other dictionaries:

  • single crystal — ▪ crystallography       any solid object in which an orderly three dimensional arrangement of the atoms, ions, or molecules is repeated throughout the entire volume. Certain minerals (mineral), such as quartz and the gemstones, often occur as… …   Universalium

  • single crystal — monokristalas statusas T sritis automatika atitikmenys: angl. monocrystal; single crystal vok. Einkristall, m; Monokristall, m rus. монокристалл, m pranc. monocristal, m …   Automatikos terminų žodynas

  • single crystal — monokristalas statusas T sritis chemija apibrėžtis Gamtinis ar dirbtinis pavienis kristalas, turintis praktiškai nepažeistą kristalinę struktūrą. atitikmenys: angl. monocrystal; single crystal rus. монокристалл …   Chemijos terminų aiškinamasis žodynas

  • single crystal — monokristalas statusas T sritis fizika atitikmenys: angl. monocrystal; single crystal vok. Einkristall, m; Monokristall, m rus. монокристалл, m pranc. monocristal, m …   Fizikos terminų žodynas

  • Single crystal silicon — (Czochralsky)   Silicon cells with a well ordered crystalline structure consisting of one crystal (usually obtained by means of the Czochralsky growth technique and involving in got slicing), composing a module. Ribbon silicon is excluded.   U.S …   Energy terms

  • single-crystal ingot — monokristalinis luitas statusas T sritis radioelektronika atitikmenys: angl. single crystal ingot; single crystal rod vok. Einkristallstab, m rus. монокристаллический слиток, m pranc. lingot monocristallin, m …   Radioelektronikos terminų žodynas

  • single-crystal rod — monokristalinis luitas statusas T sritis radioelektronika atitikmenys: angl. single crystal ingot; single crystal rod vok. Einkristallstab, m rus. монокристаллический слиток, m pranc. lingot monocristallin, m …   Radioelektronikos terminų žodynas

  • single crystal filament — siūlinis monokristalas statusas T sritis fizika atitikmenys: angl. crystal whisker; single crystal filament vok. Einkristallfaden, m rus. нитевидный монокристалл, m pranc. fil monocristallin, m; trichite, f; whisker, m …   Fizikos terminų žodynas

  • single-crystal pulling — kristalo traukimas statusas T sritis fizika atitikmenys: angl. crystal pulling; single crystal pulling vok. Kristallziehen, n rus. вытягивание кристалла, n pranc. étirage de cristal, m …   Fizikos terminų žodynas

  • single-crystal and polysilicon gate — monokristalinio ir polikristalinio silicio užtūra statusas T sritis radioelektronika atitikmenys: angl. single crystal and polysilicon gate; single poly gate vok. kombiniertes Gate aus ein und polykristallinem Silizium, n rus. затвор из… …   Radioelektronikos terminų žodynas

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”