Chlorodiphenylphosphine

Chlorodiphenylphosphine
Chlorodiphenylphosphine
Identifiers
CAS number 1079-66-9 YesY
ChemSpider 59567 YesY
Jmol-3D images Image 1
Properties
Molecular formula C12H10ClP
Molar mass 220.63776 g mol-1
Appearance clear to light yellow liquid
Density 1.229 g cm-3
Boiling point

320 ˚C

Solubility in water Reacts with water
 YesY (verify) (what is: YesY/N?)
Except where noted otherwise, data are given for materials in their standard state (at 25 °C, 100 kPa)
Infobox references

Chlorodiphenylphosphine is an organophosphorus compound with the formula (C6H5)2PCl, abbreviated Ph2PCl. It is a colourless oily liquid with a pungent odor that is often described as being garlic-like and detectable even in the ppb range. It is useful reagent for introducing the Ph2P group into molecules, which includes many ligand.[1] Like other halophosphines, Ph2PCl is reactive with many nucleophiles such as water and easily oxidized even by air.

Contents

Synthesis and reactions

Chlorodiphenylphosphine is produced on a commercial scale from benzene and phosphorus trichloride (PCl3). Benzene reacts with phosphorus trichloride at extreme temperatures around 600 °C to give dichlorophenylphosphine (PhPCl2). Redistribution of PhPCl2 in the gas phase at high temperatures results in chlorodiphenylphosphine.[1][2]

2 PhPCl2 → Ph2PCl + PCl3

Alternatively such compounds are prepared by redistribution reactions starting with triphenylphosphine and phosphorus trichloride. Synthesis of Ph2PCl by the direct reaction of phenylmagnesium bromide and phosphorus trichloride is not practiced. On the other hand, PCl3 can be usefully converted to its monoamide, which in turn undergoes alkylation or arylation. Subsequent removal of the amide gives :[3]

PCl3 + 2 (iPr)2NH → (iPr)2NH2Cl + (iPr)2NPCl2
(iPr)2NPCl2 + 2 PhMgBr → (iPr)2NPPh2 + 2 MgBrCl
(iPr)2NPPh2 + 2 HCl → (iPr)2NH2Cl + PPh2Cl

Uses

Ph2PCl, along with other chlorophosphines, is used in the synthesis of various phosphines. A typical route uses Grignard reagents:[2]

Ph2PCl + MgRX → Ph2PR + MgClX

The phosphines produced from reactions with Ph2PCl are further developed and used as pesticides (EPN or ethyl p-nitrophenyl thionobenzenephosphonate), stabilizers for plastics (Sandostab P-EPQ), various halogen compound catalysts, flame retardants (cyclic phosphinocarboxylic anhydride), as well as UV-hardening paint systems (used in dental materials) making Ph2PCl an important intermediate in the industrial world.[1][2]

Precursor to diphenylphosphido derivatives

Chlorodiphenylphosphine is used in the synthesis of sodium diphenylphosphide via its reaction with sodium metal in refluxing dioxane.[4]

Ph2PCl + 2 Na → Ph2PNa + NaCl

Diphenylphosphine can be synthesized in the reaction of Ph2PCl and LiAlH4, the latter usually used in excess.[5]

4 Ph2PCl + LiAlH4 → 4 Ph2PH + LiCl + AlCl4

Both Ph2PNa and Ph2PH are also used in the synthesis of organophosphine ligands.

Characterization

The quality of chlorodiphenylphosphine is often checked by 31P NMR spectroscopy.[6]

Compound 31P chemical shift

(ppm vs 85% H3PO4)

PPh3 -6
PPh2Cl 81.5
PPhCl2 165
PCl3 218

References

  1. ^ a b c Quin, L. D. A Guide to Organophosphorus Chemistry; Wiley IEEE: New York, 2000; pp 44-69. ISBN 0471318248
  2. ^ a b c Svara, J.; Weferling, N.; Hofmann, T. "Phosphorus Compounds, Organic," In 'Ullmann's Encyclopedia of Industrial Chemistry, 7th ed.; Wiley-VCH: 2008; doi:10.1002/14356007.a19_545.pub2; Accessed: February 18, 2008.
  3. ^ A. Bollmann, K. Blann, J. T. Dixon, F. M. Hess, E. Killian, H. Maumela, D. S. McGuinness, D. H. Morgan, A. Neveling, S. Otto, M. Overett, A. M. Z. Slawin, P. Wasserscheid, S. Kuhlmann, “Ethylene Tetramerization: A New Route to Produce 1-Octene in Exceptionally High Selectivities” J. Am. Chem. Soc. 2004, 126, 14712-14713 plus supporting information. doi: 10.1021/ja045602n
  4. ^ Roy, Jackson W; Thomson, RJ; MacKay.m.f, . (1985). "The Stereochemistry of Organometallic Compounds. XXV. The Stereochemistry of Displacements of Secondary Methanesulfonate and p-Toluene-sulfonate esters by Diphenylphosphide Ions. X-ray Crystal Structure of (5α-Cholestan-3α-yl)diphenylphosphine Oxide". Australian Journal of Chemistry 38 (1): 111–18. doi:10.1071/CH9850111. 
  5. ^ Stepanova, Valeria A.; Dunina, Valery V.; Smoliakova, Irina P. (2009). "Reactions of Cyclopalladated Complexes with Lithium Diphenylphosphide". Organometallics 28 (22): 6546–6558. doi:10.1021/om9005615. 
  6. ^ O. Kühl "Phosphorus-31 NMR Spectroscopy" Springer, Berlin, 2008. ISBN 978-3-540-79118-8

Wikimedia Foundation. 2010.

Игры ⚽ Поможем сделать НИР

Look at other dictionaries:

  • BINAP — IUPAC name 2,2 bis(diphenylphosphino) 1,1 binaphthyl …   Wikipedia

  • 1,1'-Bis(diphenylphosphino)ferrocene — 1,1 Bis(diphenylphosphino)ferrocene …   Wikipedia

  • Xantphos — Chembox new ImageFile = Xantphos.png ImageSize = ImageFile1 = Xantphos 3D balls.png ImageSize1 = IUPACName = 4,5 Bis(diphenylphosphino) 9,9 dimethylxanthene OtherNames = Xantphos Section1 = Chembox Identifiers CASNo = 161265 03 8 PubChem =… …   Wikipedia

  • SPANphos — Chembox new ImageFile = SPANphos.png Section1 = Chembox Properties Formula = C47H46O2P2 MolarMass = 704.814 g/mol SPANphos is a diphosphine commonly used as a ligand in organometallic compounds. This compound is a rare example of a trans spanning …   Wikipedia

  • Chlordiphenylphosphin — Strukturformel Allgemeines Name Chlordiphenylphosphan Andere Namen Chlordiphenylphosphin P Chl …   Deutsch Wikipedia

  • Diphenyl-2-pyridylphosphine — IUPAC name Diphenyl 2 pyridylphosphine …   Wikipedia

  • Diphosphane — This article is about P2H4. For other uses, see diphosphines. Diphosphane IUPAC name …   Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”