- Monensin
-
Monensin A 4-[2-[5-ethyl-5-[5-[6-hydroxy-6-(hydroxymethyl)-3,5-dimethyl-oxan-2-yl]- 3-methyl-oxolan-2-yl]oxolan-2-yl]- 9-hydroxy-2,8-dimethyl-1,6-dioxasp iro[4.5]dec-7-yl]-3-methoxy-2-methyl-
pentanoic acidOther namesmonensic acidIdentifiers CAS number 17090-79-8 PubChem 441145 ChemSpider 389937 UNII 906O0YJ6ZP KEGG D08228 ChEBI CHEBI:27617 ChEMBL CHEMBL256105 ATCvet code QP51 Jmol-3D images Image 1 - O=C(O)[C@@H](C)[C@H](OC)[C@H](C)[C@H]5O[C@]1(O[C@@](C)(CC1)[C@@H]2O[C@@](CC)(CC2)[C@@H]4O[C@@H]([C@H]3O[C@@](O)(CO)[C@@H](C[C@@H]3C)C)C[C@@H]4C)C[C@H](O)[C@H]5C
- InChI=1S/C36H62O11/c1-10-34(31-20(3)16-26(43-31)28-19(2)15-21(4)36(41,18-37)46-28)12-11-27(44-34)33(8)13-14-35(47-33)17-25(38)22(5)30(45-35)23(6)29(42-9)24(7)32(39)40/h19-31,37-38,41H,10-18H2,1-9H3,(H,39,40)/t19-,20-,21+,22+,23-,24-,25-,26+,27+,28-,29+,30-,31+,33-,34-,35+,36-/m0/s1
Key: GAOZTHIDHYLHMS-KEOBGNEYSA-N
InChI=1/C36H62O11/c1-10-34(31-20(3)16-26(43-31)28-19(2)15-21(4)36(41,18-37)46-28)12-11-27(44-34)33(8)13-14-35(47-33)17-25(38)22(5)30(45-35)23(6)29(42-9)24(7)32(39)40/h19-31,37-38,41H,10-18H2,1-9H3,(H,39,40)/t19-,20-,21+,22+,23-,24-,25-,26+,27+,28-,29+,30-,31+,33-,34-,35+,36-/m0/s1
Key: GAOZTHIDHYLHMS-KEOBGNEYBF
Properties Molecular formula C36H62O11 Molar mass 670.871g/mol Appearance solid state, white crystals Melting point 104°C
Solubility in water 3x10-6 g/dm3 (20 °C) Solubility ethanol, acetone, diethyl ether, benzene Related compounds Related antibiotics, ionophores Related compounds Monensin A methyl ester, (verify) (what is: / ?)
Except where noted otherwise, data are given for materials in their standard state (at 25 °C, 100 kPa)Infobox references Monensin is a polyether antibiotic isolated from Streptomyces cinnamonensis. It is widely used in animal feeds.[1]
The structure of monensin was first described by Agtarap et al. in 1967, and was the first polyether antibiotic to have its structure elucidated in this way. The first total synthesis of monensin was reported in 1979 by Kishi et al.[2]
Mechanism of action
Monensin A is an ionophore related to the crown ethers with a preference to form complexes with monovalent cations such as: Li+, Na+, K+, Rb+, Ag+, and Tl+.[3][4] Monensin A is able to transport these cations across lipid membranes of cells, playing an important role as an Na+/H+ antiporter. It blocks intracellular protein transport, and exhibits antibiotic, antimalarial, and other biological activities.[5] The antibacterial properties of monensin and its derivatives are a result of their ability to transport metal cations through cellular and subcellular membranes.[6]
Uses
Monensin is used extensively in the beef and dairy industries to prevent coccidiosis, increase the production of propionic acid and prevent bloat.[7]. Furthermore monensin, but also its derivatives monensin methyl ester (MME), and particularly monensin decyl ester (MDE) are widely used in ion selective electrodes.[8][9][10]
References
- ^ Patrick Butaye, Luc A. Devriese, Freddy Haesebrouck "Antimicrobial Growth Promoters Used in Animal Feed: Effects of Less Well Known Antibiotics on Gram-Positive Bacteria" Clinical Microbiology Reviews, 2003, p. 175-188, Vol. 16. doi:10.1128/CMR.16.2.175-188.2003
- ^ Nicolaou, K. C.; E. J. Sorensen (1996). Classics in Total Synthesis. Weinheim, Germany: VCH. pp. 185–187. ISBN 3-527-29284-5.
- ^ A. Huczyński, M. Ratajczak-Sitarz, A. Katrusiak, B. Brzezinski, ”Molecular structure of the 1:1 inclusion complex of Monensin A lithium salt with acetonitrile”, J. Mol. Struct., 2007, 871, 92-97, doi:10.1016/j.molstruc.2006.07.046
- ^ M. Pinkerton, L. K. Steinrauf, "Molecular structure of monovalent metal cation complexes of monensin", J. Mol. Biol., 1970 49(3), 533-546
- ^ H. H. Mollenhauer, D. J. Morre, L. D. Rowe, ”Alteration of intracellular traffic by monensin; mechanism, specificity and relationship to toxicity”, Biochim. Biophys. Acta, 1990, 1031(2), 225-246, doi:10.1016/0304-4157(90)90008-Z
- ^ A. Huczyński, J. Stefańska, P. Przybylski, B. Brzezinski and F. Bartl, "Synthesis and antimicrobial properties of Monensin A esters", Bioorg. Med. Chem. Lett., 2008, 18, 2585-2589, doi:10.1016/j.bmcl.2008.03.038
- ^ T. Matsuoka, M.N. Novilla, T.D. Thomson and A.L. Donoho, "Review of monensin toxicosis in horses", Journal of Equine Veterinary Science 16, 1996, 8-15, doi:10.1016/S0737-0806(96)80059-1
- ^ K. Tohda, K. Suzuki, N. Kosuge, H. Nagashima, H. Inoue K. Watanabe, ”A Sodium Ion Selective Electrode Based on a Highly Lipophilic Monensin Derivative and Its Application to the Measurement of Sodium Ion Concentrations in Serum”, Anal. Sci. 6, 1990, 227-232, doi:10.2116/analsci.6.227
- ^ N. Kim, K. Park, I. Park, Y. Cho, Y. Bae, ”Application of a taste evaluation system to the monitoring of Kimchi fermentation”, Biosensors and Bioelectronics 20, 2005, 2283-2291,doi:10.1016/j.bios.2004.10.007
- ^ K. Toko, ”Taste Sensor”, Sensors and Actuators B: Chemical 64, 2000, 205-215, doi:10.1016/S0925-4005(99)00508-0
Categories:- Antibiotics
- Ionophores
- Carboxylic acids
Wikimedia Foundation. 2010.