A specimen of the NWA 869 chondrite (type L4-6), showing chondrules and metal flakes

Chondrites are stony meteorites that have not been modified due to melting or differentiation of the parent body. They formed when various types of dust and small grains that were present in the early solar system accreted to form primitive asteroids. Prominent among the components present in chondrites are the enigmatic chondrules, millimeter-sized objects that originated as freely floating, molten or partially molten droplets in space; most chondrules are rich in the silicate minerals olivine and pyroxene. Chondrites also contain refractory inclusions (including Ca-Al Inclusions), which are among the oldest objects to form in the solar system, particles rich in metallic Fe-Ni and sulfides, and isolated grains of silicate minerals. The remainder of chondrites consists of fine-grained (micrometer-sized or smaller) dust, which may either be present as the matrix of the rock or may form rims or mantles around individual chondrules and refractory inclusions. Embedded in this dust are presolar grains, which predate the formation of our solar system and originated elsewhere in the galaxy.

Most meteorites that are recovered on Earth are chondrites: 86.2% of witnessed falls are chondrites,[1] as are the overwhelming majority of meteorites that are found. There are currently over 27,000 chondrites in the world's collections. The largest individual stone ever recovered, weighing 1770 kg, was part of the Jilin meteorite shower of 1976. Chondrite falls range from single stones to extraordinary showers consisting of thousands of individual stones, as occurred in the Holbrook fall of 1912, where an estimated 14,000 stones rained down on northern Arizona.


Origin and history

The parent bodies of chondrites are (or were) small to medium sized asteroids that were never part of any body large enough to undergo melting and planetary differentiation. These bodies accreted shortly after the beginning of the Solar System's history, with 206Pb/204Pb age of 4566.6 ± 1.0 Ma[2] years ago and matching ages for other chronometers. Although chondritic asteroids never became hot enough to melt based upon internal textures, many of them reached high enough temperatures that they experienced significant thermal metamorphism in their interiors. The source of the heat was most likely energy coming from the decay of short-lived radioisotopes (half-lives less than a few million years) that were present in the newly formed solar system, especially 26Al and 60Fe, although heating may have been caused by impacts onto the asteroids as well. Many chondritic asteroids also contained significant amounts of water, possibly due to the accretion of ice along with rocky material. As a result, many chondrites contain hydrous minerals, such as clays, that formed when the water interacted with the rock on the asteroid in a process known as aqueous alteration. In addition, all chondritic asteroids were affected by impact and shock processes due to collisions with other asteroids. These events caused a variety of effects, ranging from simple compaction to brecciation, veining, localized melting, and formation of high-pressure minerals. The net result of these secondary thermal, aqueous, and shock processes is that only a few known chondrites preserve in pristine form the original dust, chondrules, and inclusions from which they formed.

Types of chondrites

Chondrites are divided into about 15 distinct groups (see Meteorites classification) on the basis of their mineralogy,[3] bulk chemical composition, and oxygen isotopic compositions[4] (see below). The various chondrite groups likely originated on separate asteroids or groups of related asteroids. Each chondrite group has a distinctive mixture of chondrules, refractory inclusions, matrix (dust), and other components and a characteristic grain size. Other ways of classifying chondrites include weathering[5] and shock.[6]

Ordinary chondrites

Ordinary chondrites are by far the most common type of meteorite to fall on Earth: about 80% of all meteorites and over 90% of chondrites are ordinary chondrites. They contain abundant chondrules, sparse matrix (10-15% of the rock), few refractory inclusions, and variable amounts of Fe-Ni metal and troilite (FeS). Their chondrules are generally in the range of 0.5 to 1 mm in diameter. Ordinary chondrites are distinguished chemically by their depletions in refractory lithophile elements, such as Ca, Al, Ti, and rare earths, relative to Si, and isotopically by their unusually high 17O/16O ratios relative to 18O/16O compared to Earth rocks. Most, but not all, ordinary chondrites have experienced significant degrees of metamorphism, having reached temperatures well above 500°C on the parent asteroids. They are divided into three groups, which have different amounts of metal and different amounts of total iron:

  • H chondrite have High total iron and high metallic Fe (15-20% Fe-Ni metal by mass[7]), and smaller chondrules than L and LL chondrites. ~42% of ordinary chondrite falls belong to this group (see Meteorite fall statistics).
  • L chondrites have Low total iron contents (including 7-11% Fe-Ni metal by mass). ~46% of ordinary chondrite falls belong to this group, which makes them the most common type of meteorite to fall on Earth.
  • LL chondrites have Low total iron and Low metal contents (3-5% Fe-Ni metal by mass). Only 1 in 10 ordinary chondrite falls belong to this group.

Carbonaceous chondrites

Carbonaceous chondrites make up less than 5% of the chondrites that fall on earth. There are many groups of carbonaceous chondrites, but most of them are distinguished chemically by enrichments in refractory lithophile elements relative to Si and isotopically by unusually low 17O/16O ratios relative to 18O/16O compared to Earth rocks. All groups of carbonaceous chondrites except the CH group are named for a characteristic type specimen:

  • CI (Ivuna type) chondrites entirely lack chondrules and refractory inclusions; they are composed almost exclusively of fine-grained material that has experienced a high degree of aqueous alteration on the parent asteroid. CI chondrites are highly oxidized, brecciated rocks, containing abundant magnetite and sulfate minerals, and lacking metallic Fe. It is a matter of some controversy whether they once had chondrules and refractory inclusions that were later destroyed during formation of hydrous minerals, or they never had chondrules in the first place[citation needed]. CI chondrites are notable because their chemical compositions closely resemble that of the solar photosphere, neglecting the hydrogen and helium. Thus, they have the most "primitive" compositions of any meteorites and are often used as a standard for assessing the degree of chemical fractionation experienced by materials formed throughout the solar system.
  • CO (Ornans type) and CM (Mighei type) chondrites are two related groups that contain very small chondrules, mostly 0.1 to 0.3 mm in diameter; refractory inclusions are quite abundant and have similar sizes to chondrules.
    • CM chondrites are composed of about 70% fine-grained material (matrix), and most have experienced extensive aqueous alteration. The much studied Murchison meteorite, which fell in Australia in 1969, is the best known member of this group.
    • CO chondrites have only about 30% matrix and have experienced very little aqueous alteration. Most have experienced small degrees of thermal metamorphism.
  • CR (Renazzo type), CB (Bencubbin type), and CH (high metal) carbonaceous chondrites are three groups that seem to be related by their chemical and oxygen isotopic compositions. All are rich in metallic Fe-Ni, with CH and especially CB chondrites having a higher proportion of metal than all other chondrite groups. Although CR chondrites are clearly similar in most ways to other chondrite groups, the origins of CH and CB chondrites are somewhat controversial. Some workers conclude that many of the chondrules and metal grains in these chondrites may have formed by impact processes after "normal" chondrules had already formed, and thus they may not be "true" chondrites.
    • CR chondrites have chondrules that are similar in size to those in ordinary chondrites (near 1 mm), few refractory inclusions, and matrix comprises nearly half the rock. Many CR chondrites have experienced extensive aqueous alteration, but some have mostly escaped this process.
    • CH chondrites are remarkable for their very tiny chondrules, typically only about 0.02 mm (20 micrometers) in diameter. They have a small proportion of equally tiny refractory inclusions. Dusty material occurs as discrete clasts, rather than as a true matrix. CH chondrites are also distinguished by extreme depletions in volatile elements.
    • CB chondrites occur in two types, both of which are similar to CH chondrites in that they are very depleted in volatile elements and rich in metal. CBa (subgroup a) chondrites are coarse grained, with large, often cm-sized chondrules and metal grains and almost no refractory inclusions. Chondrules have unusual textures compared to most other chondrites. As in CH chondrites, dusty material only occurs in discrete clasts and there is no fine-grained matrix. CBb (subgroup b) chondrites contain much smaller (mm-sized) chondrules and do contain refractory inclusions.
  • CV (Vigarano type) chondrites are characterized by mm-sized chondrules and abundant refractory inclusions set in a dark matrix that comprises about half the rock. CV chondrites are noted for spectacular refractory inclusions, some of which reach centimeter sizes, and they are the only group to contain a distinctive type of large, once-molten inclusions. Chemically, CV chondrites have the highest abundances of refractory lithophile elements of any chondrite group. The CV group includes the remarkable Allende fall in Mexico in 1969, which became one of the most widely distributed and, certainly, the best-studied meteorite in history.
  • CK (Karoonda type) chondrites are chemically and texturally similar to CV chondrites. However, they contain far fewer refractory inclusions than CV, they are much more oxidized rocks, and most of them have experienced considerable amounts of thermal metamorphism (compared to CV and all other groups of carbonaceous chondrites).
  • Ungrouped carbonaceous chondrites: A number of chondrites are clearly members of the carbonaceous chondrite class, but do not fit into any of the groups. These include: the Tagish Lake meteorite, which fell in Canada in 2000 and is intermediate between CI and CM chondrites; Coolidge and Loongana 001, which form a grouplet that may be related to CV chondrites; and Acfer 094, an extremely primitive chondrite that shares properties with both CM and CO groups.

Enstatite chondrites

Enstatite chondrites (also known as E-type chondrites) are a rare form of meteorite thought to comprise only about 2% of the chondrites that fall on Earth.[8] Only about 200 E-Type chondrites are currently known.[8]

E-type chondrites are among the most chemically reduced rocks known, with most of their iron taking the form of metal or sulfide rather than as an oxide. They tend to be high in the mineral enstatite (MgSiO3), from which they derive their name.[8]

Other chondrites

R (Rumuruti type) chondrites are a very rare group, with only one documented fall out of almost 900 documented chondrite falls. They have a number of properties in common with ordinary chondrites, including similar types of chondrules, few refractory inclusions, similar chemical composition for most elements, and the fact that 17O/16O ratios are anomalously high compared to Earth rocks. However, there are significant differences between R chondrites and ordinary chondrites: R chondrites have much more dusty matrix material (about 50% of the rock); they are much more oxidized, containing little metallic Fe-Ni; and their enrichments in 17O are higher than those of ordinary chondrites.

Three chondrites form what is known as the K (Kakangari type) grouplet, characterized by large amounts of dusty matrix and oxygen isotope compositions similar to carbonaceous chondrites, highly reduced mineral compositions and high metal abundances that are most like enstatite chondrites, and concentrations of refractory lithophile elements that are most like ordinary chondrites.


Because chondrites accumulated from material that formed very early in the history of the solar system, and because chondritic asteroids did not melt, they have very primitive compositions. "Primitive," in this sense, means that the abundances of most chemical elements do not differ greatly from those that are measured by spectroscopic methods in the photosphere of the sun, which in turn should be well-representative of the entire solar system (note: to make such a comparison between a gaseous object like the sun and a rock like a chondrite, scientists choose one rock-forming element, such as silicon, to use as a reference point, and then compare ratios. Thus, the atomic ratio of Mg/Si measured in the sun (1.07) is identical to that measured in CI chondrites [9]).

Although all chondrite compositions can be considered primitive, there is variation among the different groups, as discussed above. CI chondrites seem to be nearly identical in composition to the sun for all but the gas-forming elements (e.g., hydrogen, carbon, nitrogen, and noble gases). Other chondrite groups deviate from the solar composition (i.e., they are fractionated) in highly systematic ways:

  • At some point during the formation of many chondrites, particles of metal became partially separated from particles of silicate minerals. As a result, chondrites coming from asteroids that did not accrete with their full complement of metal (e.g., L, LL, and EL chondrites) are depleted in all siderophile elements, whereas those that accreted too much metal (e.g., CH, CB, and EH chondrites) are enriched in these elements compared to the sun.
  • In a similar manner, although the exact process is not very well understood, highly refractory elements like Ca and Al became separated from less refractory elements like Mg and Si, and were not uniformly sampled by each asteroid. The parent bodies of many groups of carbonaceous chondrites over-sampled grains rich in refractory elements, whereas those of ordinary and enstatite chondrites were deficient in them.
  • No chondrites except the CI group formed with a full, solar complement of volatile elements. In general, the level of depletion corresponds to the degree of volatility, where the most volatile elements are most depleted.

Petrologic types

A chondrite's group is determined by its primary chemical, mineralogical, and isotopic characteristics (above). The degree to which it has been affected by the secondary processes of thermal metamorphism and aqueous alteration on the parent asteroid is indicated by its petrologic type, which appears as a number following the group name (e.g., an LL5 chondrite belongs to the LL group and has a petrologic type of 5). The current scheme for describing petrologic types was devised by Van Schmus and Wood in 1967.[3]

The petrologic-type scheme originated by Van Schmus and Wood is really two separate schemes, one describing aqueous alteration (types 1-2) and one describing thermal metamorphism (types 3-6). The alteration part of the system works as follows:

  • Type 1 was originally used to designate chondrites that lacked chondrules and contained large amounts of water and carbon. Current usage of type 1 is simply to indicate meteorites that have experienced extensive aqueous alteration, to the point that most of their olivine and pyroxene have been altered to hydrous phases. This alteration took place at temperatures of 50 to 150°C, so type 1 chondrites were warm, but not hot enough to experience thermal metamorphism. The members of the CI group, plus a few highly altered carbonaceous chondrites of other groups, are the only instances of type 1 chondrites.
  • Type 2 chondrites are those that have experienced extensive aqueous alteration, but still contain recognizable chondrules as well as primary, unaltered olivine and/or pyroxene. The fine-grained matrix is generally fully hydrated and minerals inside chondrules may show variable degrees of hydration. This alteration probably occurred at temperatures below 20°C, and again, these meteorites are not thermally metamorphosed. Almost all CM and CR chondrites are petrologic type 2; with the exception of some ungrouped carbonaceous chondrites, no other chondrites are type 2.

The thermal metamorphism part of the scheme describes a continuous sequence of changes to mineralogy and texture that accompany increasing metamorphic temperatures. These chondrites show little evidence of the effects of aqueous alteration:

  • Type 3 chondrites show low degrees of metamorphism. They are often referred to as unequilibrated chondrites because minerals such as olivine and pyroxene show a wide range of compositions, reflecting formation under a wide variety of conditions in the solar nebula. (Type 1 and 2 chondrites are also unequilibrated.) Chondrites that remain in nearly pristine condition, with all components (chondrules, matrix, etc.) having nearly the same composition and mineralogy as when they accreted to the parent asteroid, are designated type 3.0. As petrologic type increases from type 3.1 through 3.9, profound mineralogical changes occur, starting in the dusty matrix, and then increasingly affecting the coarser-grained components like chondrules. Type 3.9 chondrites still look superficially unchanged because chondrules retain their original appearances, but all of the minerals have been affected, mostly due to diffusion of elements between grains of different composition.
  • Types 4, 5, and 6 chondrites have been increasingly altered by thermal metamorphism. These are equilibrated chondrites, in which the compositions of most minerals have become quite homogeneous due to high temperatures. By type 4, the matrix has thoroughly recrystallized and coarsened in grain size. By type 5, chondrules begin to become indistinct and matrix cannot be discerned. In type 6 chondrites, chondrules begin to integrate with what was once matrix, and small chondrules may no longer be recognizable. As metamorphism proceeds, many minerals coarsen and new, metamorphic minerals such as feldspar form.

Some workers have extended the Van Schmus and Wood metamorphic scheme to include a type 7, although there is not consensus on whether this is necessary. Type 7 chondrites have experienced the highest temperatures possible, short of that required to produce melting. Should the onset of melting occur the meteorite would probably be classified as a primitive achondrite instead of a chondrite.

All groups of ordinary and enstatite chondrites, as well as R and CK chondrites, show the complete metamorphic range from type 3 to 6. CO chondrites comprise only type 3 members, although these span a range of petrologic types from 3.0 to 3.8.

See also


  1. ^ Bischoff, A.; Geiger, T. (1995). "Meteorites for the Sahara: Find locations, shock classification, degree of weathering and pairing". Meteoritics 30 (1): 113–122. Bibcode 1995Metic..30..113B. ISSN 0026-1114. 
  2. ^ Amelin, Yuri; Krot, Alexander (2007). "Pb isotopic age of the Allende chondrules". Meteoritics & Planetary Science 42 (7/8): 1043–1463. Bibcode 2007M&PS...42.1043F. doi:10.1111/j.1945-5100.2007.tb00559.x. Retrieved 2009-07-13. 
  3. ^ a b Van Schmus, W. R.; Wood, J. A. (1967). "A chemical-petrologic classification for the chondritic meteorites". Geochimica et Cosmochimica Acta 31 (5): 747–765. Bibcode 1967GeCoA..31..747V. doi:10.1016/S0016-7037(67)80030-9. 
  4. ^ Clayton, R. N.; Mayeda, T. K. (1989), "Oxygen Isotope Classification of Carbonaceous Chondrites", Abstracts of the Lunar and Planetary Science Conference 20: 169, Bibcode 1989LPI....20..169C 
  5. ^ Wlotzka, F. (Jul 1993), "A Weathering Scale for the Ordinary Chondrites", Meteoritics 28: 460, Bibcode 1993Metic..28Q.460W 
  6. ^ Stöffler, Dieter; Keil, Klaus; Edward R.D, Scott (Dec 1991). "Shock metamorphism of ordinary chondrites". Geochimica et Cosmochimica Acta 55 (12): 3845–3867. Bibcode 1991GeCoA..55.3845S. doi:10.1016/0016-7037(91)90078-J. 
  7. ^
  8. ^ a b c Norton, O.R. and Chitwood, L.A. Field Guide to Meteors and Meteorites, Springer-Verlag, London 2008
  9. ^ Grevesse and Sauval (2005) in Encyclopedia of Astronomy & Astrophysics, IOP Publishing, Ltd.

External links

Wikimedia Foundation. 2010.

Игры ⚽ Поможем решить контрольную работу

Look at other dictionaries:

  • chondrite — ● chondrite nom féminin (grec khondros, cartilage) Inflammation d un cartilage. ● chondrite nom féminin (grec khondritês, fait de gruau) Météorite constituée de chondres. (Les chondrites représentent 80 % des météorites.) chondrite [kɔ̃dʀit] n. f …   Encyclopédie Universelle

  • Chondrite — Chon drite, n. [Gr. ? a grain (of wheat or spelt), cartilage.] (Min.) A meteoric stone characterized by the presence of chondrules. [1913 Webster] …   The Collaborative International Dictionary of English

  • Chondrīte — Chondrīte, eine Gruppe der Meteorsteine (s.d.) …   Meyers Großes Konversations-Lexikon

  • chondrite — [kän′drīt΄] n. [Ger chondrit < chondrum, a chondrule (< Gr chondros: see CHONDRO ) + ITE1] the type of stony meteorite that contains chondrules chondritic [kän drit′ik] adj …   English World dictionary

  • Chondrite — Allende (Meteorit) L6 Chondrit Holbrook. Schnittfläche, helle Körner sind Metall. Höhe 5 cm. Chondrite bilden mit einem Anteil von etwa 86 Prozent die größte Klasse der …   Deutsch Wikipedia

  • Chondrite — Chondrules bien visibles sur une tranche d un fragment de la météorite Allende. Chondrite (se prononce kondrite) est un terme utilisé en astronomie pour désigner un certain type de météorites pierreuses (moins de 35 % de métal). Cette… …   Wikipédia en Français

  • Chondrite CI — Les chondrites CI ou chondrites du type CI, parfois appelées chondrites C1, sont des météorites pierreuses appartenant aux chondrites carbonées. De toutes les météorites leur composition chimique montre la plus grande affinité avec l abondance… …   Wikipédia en Français

  • Chondrite de type H — Chondrite de type H5 Sud Maroc Les chondrites ordinaires de type H sont le type de météorite le plus courant. Elles constituent environ 40 % des météorites, 46 %des chondrites ordinaires et 44 % des chondrites[1]. Le nom vient de… …   Wikipédia en Français

  • Chondrite carbonee — Chondrite carbonée Une chondrite carbonée ou chondrite de type C est une météorite chondritique. Portail de l’astronomie Ce document provient de « Chondrite carbon%C3%A9e ». Catégorie : Classification des météorites …   Wikipédia en Français

  • Chondrite ordinaire — Les chondrites ordinaires (parfois appelées chondrites O) sont un type de météorites chondritiques. Elles sont de loin les plus nombreuses et constituent 87 % de toutes les observations. C est la raison pour laquelle elles ont été qualifiées …   Wikipédia en Français

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”