- Many-body problem
-
Quantum mechanics
Introduction
Mathematical formulationsFundamental conceptsExperimentsDouble-slit · Davisson–Germer
Stern–Gerlach · Bell's inequality
Popper · Schrödinger's cat
Elitzur–Vaidman bomb tester
Quantum eraser
Delayed choice quantum eraser
Wheeler's delayed choiceFormulationsEquationsInterpretationsde Broglie–Bohm
Consciousness-caused
Consistent histories · Copenhagen
Ensemble · Hidden variables
Many-worlds · Objective collapse
Pondicherry · Quantum logic
Relational · Stochastic
TransactionalScientistsBell · Bohm · Bohr · Born · Bose
de Broglie · Dirac · Ehrenfest
Everett · Feynman · Heisenberg
Jordan · Kramers · von Neumann
Pauli · Planck · Schrödinger
Sommerfeld · Wien · WignerThis article is about the many-body problem in quantum mechanics. For the n-body problem in classical mechanics, see n-body problem.The many-body problem is a general name for a vast category of physical problems pertaining to the properties of microscopic systems made of a large number of interacting particles. Microscopic here implies that quantum mechanics has to be used to provide an accurate description of the system. A large number can be anywhere from 3 to infinity (in the case of a practically infinite, homogeneous or periodic system, such as a crystal), although three- and four-body systems can be treated by specific means (respectively the Faddeev and Faddeev-Yakubovsky equations) and are thus sometimes separately classified as few-body systems. In such a quantum system, the repeated interactions between particles create quantum correlations, or entanglement. As a consequence, the wave function of the system is a complicated object holding a large amount of information, which usually makes exact and/or analytical calculations impractical. Thus, many-body theoretical physics most often relies on a set of approximations specific to the problem at hand, and ranks among the most computationally intensive fields of science.
Contents
Examples
- Condensed matter physics (solid-state physics, nanoscience, superconductivity)
- Bose-Einstein condensation and Superfluids
- Quantum chemistry (computational chemistry, molecular physics)
- Atomic physics
- Molecular physics
- Nuclear physics (Nuclear structure, nuclear reactions, nuclear matter)
- Quantum chromodynamics (Lattice QCD, hadron spectroscopy, QCD matter, quark-gluon plasma)
Approaches
- Mean-field theory and extensions (e.g. Hartree-Fock, Random phase approximation)
- Dynamical Mean Field Theory
- Many-body perturbation theory and Green's function-based methods
- Configuration interaction
- Coupled cluster
- Various Monte-Carlo approaches
- Density functional theory
- Lattice gauge theory
Quotes
"It would indeed be remarkable if Nature fortified herself against further advances in knowledge behind the analytical difficulties of the many-body problem."—Max Born, 1960Further reading
- Jenkins, Stephen. "The Many Body Problem and Density Functional Theory". http://newton.ex.ac.uk/research/qsystems/people/jenkins/mbody/mbody3.html.
- Thouless, D. J. (1972). The quantum mechanics of many-body systems. New York: Academic Press. ISBN 0-12-691560-1.
- Fetter, A. L.; Walecka, J. D. (2003). Quantum Theory of Many-Particle Systems. New York: Dover. ISBN 0-486-42827-3.
- Nozières, P. (1997). Theory of Interacting Fermi Systems. Addison-Wesley. ISBN 0-201-32824-0.
- Mattuck, R. D. (1976). A guide to Feynman diagrams in the many-body problem. New York: McGraw-Hill. ISBN 0-07-040954-4.
Categories:- Quantum mechanics
- Quantum physics stubs
Wikimedia Foundation. 2010.