Ehrenfest theorem

Ehrenfest theorem

The Ehrenfest theorem, named after Paul Ehrenfest, relates the time derivative of the expectation value for a quantum mechanical operator to the commutator of that operator with the Hamiltonian of the system. It is

:frac{d}{dt}langle A angle = frac{1}{ihbar}langle [A,H] angle + leftlangle frac{partial A}{partial t} ight angle

where A is some QM operator and langle A angle is its expectation value. Ehrenfest's theorem is obvious in the Heisenberg picture of quantum mechanics, where it is just the expectation value of the Heisenberg equation of motion.

Ehrenfest's theorem is closely related to Liouville's theorem from Hamiltonian mechanics, which involves the Poisson bracket instead of a commutator. In fact, it is a general rule of thumb that a theorem in quantum mechanics which contains a commutator can be turned into a theorem in classical mechanics by changing the commutator into a Poisson bracket and multiplying by ihbar.

Derivation

Suppose some system is presently in a quantum state Phi. If we want to know the instantaneous time derivative of the expectation value of A, that is, by definition

: frac{d}{dt}langle A angle = frac{d}{dt}int Phi^* A Phi~dx^3 = int left( frac{partial Phi^*}{partial t} ight) APhi~dx^3 + int Phi^* left( frac{partial A}{partial t} ight) Phi~dx^3 +int Phi^* A left( frac{partial Phi}{partial t} ight) ~dx^3

: = int left( frac{partial Phi^*}{partial t} ight) APhi~dx^3 + leftlangle frac{partial A}{partial t} ight angle + int Phi^* A left( frac{partial Phi}{partial t} ight) ~dx^3,

where we are integrating over all space. If we apply the Schrödinger equation, we find that

:frac{partial Phi}{partial t} = frac{1}{ihbar}HPhi

and

:frac{partial Phi^*}{partial t} = frac{-1}{ihbar}Phi^*H^* = frac{-1}{ihbar}Phi^*H.ref|adjoint

Notice H=H^* because the Hamiltonian is hermitian. Placing this into the above equation we have

:frac{d}{dt}langle A angle = frac{1}{ihbar}int Phi^* (AH-HA) Phi~dx^3 + leftlangle frac{partial A}{partial t} ight angle = frac{1}{ihbar}langle [A,H] angle + leftlangle frac{partial A}{partial t} ight angle.

Often (but not always) the operator A is time independent, so that its derivative is zero and we can ignore the last term.

General example

For the very general example of a massive particle moving in a potential, the Hamiltonian is simply

H(x,p,t) = frac{p^2}{2m} + V(x,t)

where "x" is just the location of the particle. Suppose we wanted to know the instantaneous change in momentum "p". Using Ehrenfest's theorem, we have

: frac{d}{dt}langle p angle = frac{1}{ihbar}langle [p,H] angle + leftlangle frac{partial p}{partial t} ight angle = frac{1}{ihbar}langle [p,V(x,t)] angle

since "p" commutes with itself and since when represented in coordinate space, the momentum operator p = -ihbar abla then frac{partial p}{partial t} = 0. Also

: frac{d}{dt}langle p angle = int Phi^* V(x,t) ablaPhi~dx^3 - int Phi^* abla (V(x,t)Phi)~dx^3.

After applying a product rule, we have

: frac{d}{dt}langle p angle = langle - abla V(x,t) angle = langle F angle,

but we recognize this as Newton's second law. This is an example of the correspondence principle, the result manifests as Newton's second law in the case of having so many particles that the net motion is given exactly by the expectation value of a single particle.

Notes

# In Bra-ket notation

:: frac{partial}{partial t}langle phi |x angle =frac{-1}{ihbar}langle phi |hat{H}|x angle =frac{-1}{ihbar}langle phi |x angle H=frac{-1}{ihbar}Phi^*H

:where hat{H} is the Hamiltonian operator, and "H" is the Hamiltonian represented in coordinate space (as is the case in the derivation above). In other words, we applied the adjoint operation to the entire Schrödinger equation, which flipped the order of operations for "H" and Phi.


Wikimedia Foundation. 2010.

Игры ⚽ Поможем сделать НИР

Look at other dictionaries:

  • Ehrenfest-Theorem — Das Ehrenfest Theorem, benannt nach dem österreichischen Physiker Paul Ehrenfest, stellt innerhalb der Physik einen Zusammenhang zwischen der klassischen Mechanik und der Quantenmechanik her. Es besagt, dass unter bestimmten Bedingungen die… …   Deutsch Wikipedia

  • Ehrenfest — is a surname which may refer to:* Paul Ehrenfest, an Austrian physicist and a mathematician ** Ehrenfest paradox and Ehrenfest theorem, named after him * Tatjana Ehrenfest Afanassjewa, a Russian mathematician, wife of Paul * Tanja van Aardenne… …   Wikipedia

  • Ehrenfest — ist der Familienname folgender Personen: Paul Ehrenfest (1880–1933), österreichischer Physiker Tatjana Ehrenfest Afanassjewa (1876–1964), russisch niederländische Physikerin und Mathematikerin Siehe auch: Ehrenfest Theorem …   Deutsch Wikipedia

  • Ehrenfest’s theorem — Ėrenfesto teorema statusas T sritis fizika atitikmenys: angl. Ehrenfest’s theorem vok. Ehrenfestsches Satz, m rus. теорема Эренфеста, f pranc. théorème d’Ehrenfest, m …   Fizikos terminų žodynas

  • Paul Ehrenfest — Infobox Scientist box width = 300px name = Paul Ehrenfest image size = 300px caption = birth date = birth date|1880|1|18|mf=y birth place = Vienna, Austria death date = death date and age|1933|9|25|1880|1|18 death place = residence = Netherlands… …   Wikipedia

  • Ehrenfestsches Theorem — Das Ehrenfest Theorem, benannt nach dem österreichischen Physiker Paul Ehrenfest, stellt innerhalb der Physik einen Zusammenhang zwischen der klassischen Mechanik und der Quantenmechanik her. Es besagt, dass unter bestimmten Bedingungen die… …   Deutsch Wikipedia

  • No-cloning theorem — Quantum mechanics Uncertainty principle …   Wikipedia

  • Paul Ehrenfest — (* 18. Januar 1880 in Wien; † 25. September 1933 in Amsterdam) war ein österreichischer Physiker. Inhaltsverzeichnis …   Deutsch Wikipedia

  • Tatyana Pavlovna Ehrenfest — Tatyana Pavlovna Ehrenfest, later van Aardenne Ehrenfest, (Vienna, October 28, 1905 ndash; Dordrecht, November 29, 1984) was a Dutch mathematician. She was the daughter of Paul Ehrenfest (1880 ndash; 1933) and Tatyana Alexeyevna Afanasyeva (1876… …   Wikipedia

  • Modele des urnes d'Ehrenfest — Modèle des urnes d Ehrenfest Le modèle des urnes est un modèle stochastique introduit en 1907 par les époux Ehrenfest pour illustrer certains des « paradoxes » apparus dans les fondements de la mécanique statistique naissante[1]. Peu de …   Wikipédia en Français

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”