- Metallothionein
-
Metallothionein superfamily, eukaryotic Solution structure of the beta-E-domain of wheat Ec-1 metallothionein.[1] Identifiers Symbol Metallothionein_sfam Pfam PF00131 InterPro IPR003019 Available protein structures: Pfam structures PDB RCSB PDB; PDBe PDBsum structure summary Metallothionein (MT) is a family of cysteine-rich, low molecular weight (MW ranging from 500 to 14000 Da) proteins. They are localized to the membrane of the Golgi apparatus. MTs have the capacity to bind both physiological (such as zinc, copper, selenium) and xenobiotic (such as cadmium, mercury, silver, arsenic) heavy metals through the thiol group of its cysteine residues, which represents nearly the 30% of its amino acidic residues.[2]
MT was discovered in 1957 by Vallee and Margoshe from purification of a Cd-binding protein from horse (equine) renal cortex.[3] MTs function is not clear, but experimental data suggest MTs may provide protection against metal toxicity, be involved in regulation of physiological metals (Zn and Cu) and provide protection against oxidative stress. There are four main isoforms expressed in humans (family 1, see chart below): MT1 (subtypes A, B, E, F, G, H, L, M, X), MT2, MT3, MT4. In the human body, large quantities are synthesised primarily in the liver and kidneys. Their production is dependent on availability of the dietary minerals, as zinc, copper and selenium, and the amino acids histidine and cysteine.
Contents
Structure and classification
MTs are present in a vast range of taxonomic groups, ranging from prokaryotes (such as the cyanobacteria Syneccococus spp....), protozoa (p. ex. the ciliate Tetrahymena genera...), plants (such as Pisum sativum, Triticum durum, Zea mays, Quercus suber...), yeast (such as Saccharomyces cerevisiae, Candida albicans,...), invertebrates (such as the nematode Caenorhabditis elegans, the insect Drosophila melanogaster, the mollusc Mytilus edulis, or the echinoderm Strongylocentrotus purpuratus) and vertebrates (such as the chicken, Gallus gallus, or the mammalian Homo sapiens or Mus musculus).
The MTs from this diverse taxonomic range represent a high-heterogeneity sequence (regarding molecular weight and number and distribution of Cys residues) and do not show general homology; in spite of this, homology is found inside some taxonomic groups (such as vertebrate MTs).From their primary structure, MTs have been classified by different methods. The first one dates from 1987, when Fowler et al., established three classes of MTs: Class I, including the MTs which show homology with horse MT, Class II, including the rest of the MTs with no homology with horse MT, and Class III, which includes phytochelatins, Cys-rich enzymatically synthesised peptides. The second classification was performed by Binz and Kagi in 2001, and takes into account taxonomic parameters and the patterns of distribution of Cys residues along the MT sequence. It results in a classification of 15 families for proteinaceous MTs. Family 15 contains the plant MTs, which in 2002 have been further classified by Cobbet and Goldsbrough into 4 Types (1, 2, 3 and 4) depending on the distribution of their Cys residues and a Cys-devoid regions (called spacers) characteristic of plant MTs.
A table including the principal aspects of the two latter classifications is included.Family Name Sequence pattern Example 1 Vertebrate K-x(1,2)-C-C-x-C-C-P-x(2)-C M.musculus MT1
MDPNCSCTTGGSCACAGSCKCKECKCTSCKKCCSCCPVGCAKCAQGCVCKGSSEKCRCCA2 Molluscan C-x-C-x(3)-C-T-G-x(3)-C-x-C-x(3)-C-x-C-K M.edulis 10MTIV
MPAPCNCIETNVCICDTGCSGEGCRCGDACKCSGADCKCSGCKVVCKCSGSCACEGGCTGPSTCKCAPGCSCK3 Crustacean P-[GD)-P-C-C-x(3,4)-C-x-C H.americanus MTH
MPGPCCKDKCECAEGGCKTGCKCTSCRCAPCEKCTSGCKCPSKDECAKTCSKPCKCCP4 Echinoderms P-D-x-K-C-[V,F)-C-C-x(5)-C-x-C-x(4)- C-C-x(4)-C-C-x(4,6)-C-C
S.purpuratus SpMTA
MPDVKCVCCKEGKECACFGQDCCKTGECCKDGTCCGICTNAACKCANGCKCGSGCSCTEGNCAC5 Diptera C-G-x(2)-C-x-C-x(2)-Q-x(5)-C-x-C-x(2)D-C-x-C D.melanogaster MTNB
MVCKGCGTNCQCSAQKCGDNCACNKDCQCVCKNGPKDQCCSNK6 Nematoda K-C-C-x(3)-C-C C.elegans MT1
MACKCDCKNKQCKCGDKCECSGDKCCEKYCCEEASEKKCCPAGCKGDCKCANCHCAEQKQCGDKTHQHQGTAAAH7 Ciliate x-C-C-C-x ? T.termophila MTT1
MDKVNSCCCGVNAKPCCTDPNSGCCCVSKTDNCCKSDTKECCTGTGEGCKCVNCKCCKPQANCCCGVNAKPCCFDPNSGCCCVSKTNNCCKSD TKECCTGTGEGCKCTSCQCCKPVQQGCCCGDKAKACCTDPNSGCCCSNKANKCCDATSKQECQTCQCCK8 Fungal 1 C-G-C-S-x(4)-C-x-C-x(3,4)-C-x-C-S-x-C N.crassa MT
MGDCGCSGASSCNCGSGCSCSNCGSK9 Fungal 2 --- C.glabrata MT2
MANDCKCPNGCSCPNCANGGCQCGDKCECKKQSCHGCGEQCKCGSHGSSCHGSCGCGDKCECK10 Fungal 3 --- C.glabrata MT2
MPEQVNCQYDCHCSNCACENTCNCCAKPACACTNSASNECSCQTCKCQTCKC11 Fungal 4 C-X-K-C-x-C-x(2)-C-K-C Y.lipolitica MT3
MEFTTAMLGASLISTTSTQSKHNLVNNCCCSSSTSESSMPASCACTKCGCKTCKC12 Fungal 5 --- S.cerevisiae CUP1
MFSELINFQNEGHECQCQCGSCKNNEQCQKSCSCPTGCNSDDKCPCGNKSEETKKSCCSGK13 Fungal 6 --- S.cerevisiae CRS5
TVKICDCEGECCKDSCHCGSTCLPSCSGGEKCKCDHSTGSPQCKSCGEKCKCETTCTCEKSKCNCEKC14 Procaryota K-C-A-C-x(2)-C-L-C Synechococcus sp SmtA
MTTVTQMKCACPHCLCIVSLNDAIMVDGKPYCSEVCANGTCKENSGCGHAGCGCGSA15 Plant 15.1 Plant MTs Type 1 C-X-C-X(3)- C-X-C-X(3)- C-X-C-X(3)-spacer-C-X-C-X(3)- C-X-C-X(3)- C-X-C-X(3) Pisum sativum MT
MSGCGCGSSCNCGDSCKCNKRSSGLSYSEMETTETVILGVGPAKIQFEGAEMSAASEDGGCKCGDNCTCDPCNCK15.2 Plant MTs Type 2 C-C-X(3)-C-X-C-X(3)- C-X-C-X(3)- C-X-C-X(3)-spacer- C-X-C-X(3)- C-X-C-X(3)- C-X-C-X(3) L.esculetum MT
MSCCGGNCGCGSSCKCGNGCGGCKMYPDMSYTESSTTTETLVLGVGPEKTSFGAMEMGESPVAENGCKCGSDCKCNPCTCSK15.3 Plant MTs Type 3 --- A.thaliana MT3
MSSNCGSCDCADKTQCVKKGTSYTFDIVETQESYKEAMIMDVGAEENNANCKCKCGSSCSCVNCTCCPN15.4 Plant MTs Type 4 or Ec C-x(4)-C-X-C-X(3)-C-X(5)-C-X-C-X(9,11)-HTTCGCGEHC- X-C-X(20)-CSCGAXCNCASC-X(3,5)
T.aestium MT
MGCNDKCGCAVPCPGGTGCRCTSARSDAAAGEHTTCGCGEHCGCNPCACGREGTPSGRANRRANCSCGAACNCASCGSTTA99 Phytochelatins and other non-proteinaceous MT-like polypeptides --- S.pombe
γEC-γEC-γECGMore data on this classification are discoverable at the Expasy metallothionein page [1]
Secondary structure elements have been observed in several MTs SmtA from Syneccochoccus, mammalian MT3, Echinoderma SpMTA, fish Notothenia Coriiceps MT, Crustacean MTH, , but until this moment, the content of such structures is considered to be poor in MTs, and its functional influence is not considered.
Tertiary structure of MTs is also highly heterogeneous. While vertebrate, echinoderm and crustacean MTs show a bidominial structure with divalent metals as Zn(II) or Cd(II) (the protein is folded so as to bind metals in two functionally independent domains, with a metallic cluster each) , yeast and procariotyc MTs show a monodominial structure (one domain with a single metallic cluster). Although no structural data is available for molluscan, nematoda and Drosophila MTs, it is commonly assumed that the former are bidominial and the latter monodominial. No conclusive data are available for Plant MTs, but two possible structures have been proposed: 1) a bidominial structure similar to that of vertebrate MTs; 2) a codominial structure, in which two Cys-rich domains interact to form a single metallic cluster.
Quaternary structure has not been broadly considered for MTs. Dimerization and oligomerization processes have been observed and attributed to several molecular mechanisms, including intermolecular disulfide formation, bridging through metals bound by either Cys or His residues on different MTs, or inorganic phosphate-mediated interactions. Dimeric and polymeric MTs have been shown to acquire novel properties upon metal detoxification, but the physiological significance of these processes has been demonstrated only in the case of prokaryotic Synechococcus SmtA. The MT dimer produced by this organism forms structures similar to zinc fingers and has Zn-regulatory activity.
Metallothioneins have diverse metal-binding preferences, which have been associated with functional specificity. As an example, the mammalian Mus musculus MT1 preferentially binds divalent metal ions (Zn(II), Cd(II),...), while yeast CUP1 is selective for monovalent metal ions (Cu(I), Ag(I),...). A novel functional classification of MTs as Zn- or Cu-thioneins is currently being developed based on these functional preferences.
Function
Metal binding
Metallothionein has been documented to bind a wide range of metals including cadmium, zinc, mercury, copper, arsenic, silver, etc. Metallation of MT was previously reported to occur cooperatively but recent reports have provided strong evidence that metal-binding occurs via a sequential, noncooperative mechanism.[4] The observation of partially-metallated MT (that is, having some free metal binding capacity) suggest that these species are biologically important.
Metallothioneins likely participate in the uptake, transport, and regulation of zinc in biological systems. Mammalian MT binds three Zn(II) ions in its beta domain and four in the alpha domain. Cysteine is a sulfur-containing amino acid, hence the name "-thionein". However, the participation of inorganic sulfide and chloride ions has been proposed for some MT forms. In some MTs, mostly bacterial, histidine participates in zinc binding. By binding and releasing zinc, metallothioneins (MTs) may regulate zinc levels within the body. Zinc, in turn, is a key element for the activation and binding of certain transcription factors through its participation in the zinc finger region of the protein. Metallothionein also carries zinc ions (signals) from one part of the cell to another. When zinc enters a cell, it can be picked up by thionein (which thus becomes "metallothionein") and carried to another part of the cell where it is released to another organelle or protein. In this way the thionein-metallothionein becomes a key component of the zinc signaling system in cells. This system is particularly important in the brain, where zinc signaling is prominent both between and within nerve cells. It also seems to be important for the regulation of the tumor suppressor protein p53.
Control of oxidative stress
Cysteine residues from MTs can capture harmful oxidant radicals like the superoxide and hydroxyl radicals.[5] In this reaction, cysteine is oxidized to cystine, and the metal ions which were bound to cysteine are liberated to the media. As explained in the Expression and regulation section, this Zn can activate the synthesis of more MTs. This mechanism has been proposed to be an important mechanism in the control of the oxidative stress by MTs. The role of MTs in oxidative stress has been confirmed by MT Knockout mutants, but some experiments propose also a prooxidant role for MTs.
Expression and regulation
Metallothionein gene expression is induced by a high variety of stimuli, as metal exposure, oxidative stress, glucocorticoids, hydric stress, etc. The level of the response to these inducers depends on the MT gene. MT genes present in their promotors specific sequences for the regulation of the expression, elements as metal response elements (MRE), glucocorticoid response elements (GRE), GC-rich boxes, basal level elements (BLE), and thyroid response elements (TRE)[citation needed].
Metallothionein and disease
Cancer
Because MTs play an important role in transcription factor regulation, problems with MT function or expression may lead to malignant transformation of cells and ultimately cancer.[6] Studies have found increased expression of MTs in some cancers of the breast, colon, kidney, liver, skin (melanoma), lung, nasopharynx, ovary, prostate, mouth, salivary gland, testes, thyroid and urinary bladder; they have also found lower levels of MT expression in hepatocellular carcinoma and liver adenocarcinoma.[citation needed]
There is evidence to suggest that higher levels of MT expression may also lead to resistance to chemotherapeutic drugs.[citation needed]
Autism
Heavy metal toxicity has been proposed as a hypothetical etiology of autism, and dysfunction of MT synthesis and activity may play a role in this. Many heavy metals, including mercury, lead, and arsenic have been linked to symptoms that resemble the neurological symptoms of autism.[7] However, MT dysfunction has not specifically been linked to autistic spectrum disorders. A 2006 study, investigating children exposed to the vaccine preservative thiomersal, found that levels of MT and antibodies to MT in autistic children did not differ significantly from normal children.[8]
See also
References
- ^ PDB 2KAK; Peroza EA, Schmucki R, Güntert P, Freisinger E, Zerbe O (March 2009). "The beta(E)-domain of wheat E(c)-1 metallothionein: a metal-binding domain with a distinctive structure". J. Mol. Biol. 387 (1): 207–18. doi:10.1016/j.jmb.2009.01.035. PMID 19361445.
- ^ Sigel, A.; Sigel, H.; Sigel, R.K.O., ed (2009). Metallothioneins and Related Chelators. Metal Ions in Life Sciences. 5. Cambridge: RSC Publishing. ISBN 978-1-84755-899-2.
- ^ Margoshes, M. and B.L. Vallee (1957). "A cadmium protein from equine kidney cortex". Journal of American Chemical Society 79 (17): 4813. doi:10.1021/ja01574a064.
- ^ Krezel, A. and Maret, W. (2007). "Dual nanomolar and picomolar Zn(II) binding properties of metallothionein". Journal of American Chemical Society 129 (35): 10911–21. doi:10.1021/ja071979s. PMID 17696343.
- ^ M. V. Kumari, M. Hiramatsu, M. Ebadi (August 1998). "Free radical scavenging actions of metallothionein isoforms I and II". Free Radical Research 29 (2): 93–101. doi:10.1080/10715769800300111. PMID 9790511.
- ^ S. Krizkova, I. Fabrik, V. Adam, J. Hrabeta, T. Eckschlager, and R. Kizek (2009). "Metallothionein—a promising tool for cancer diagnostics". Bratisl Lek Listy 110 (2): 93–97. PMID 19408840.
- ^ Drum, DA (2009). "Are toxic biometals destroying your children's future". Biometals 22 (5): 697–700. doi:10.1007/s10534-009-9212-9. PMID 19205900.
- ^ Singh VK, Hanson J (2006). "Assessment of metallothionein and antibodies to metallothionein in normal and autistic children having exposure to vaccine-derived thimerosal". Pediatr Allergy Immunol 17 (4): 291–6. doi:10.1111/j.1399-3038.2005.00348.x. PMID 16771783.
Further reading
- Cherian MG, Jayasurya A, Bay BH (December 2003). "Metallothioneins in human tumors and potential roles in carcinogenesis". Mutat. Res. 533 (1–2): 201–9. doi:10.1016/j.mrfmmm.2003.07.013. PMID 14643421.
External links
Categories:- Enzymes
Wikimedia Foundation. 2010.