Hexicated 7-simplex

Hexicated 7-simplex
7-simplex t0.svg
7-simplex
CDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png
7-simplex t06.svg
Hexicated 7-simplex
CDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.png
7-simplex t016.svg
Hexitruncated 7-simplex
CDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.png
7-simplex t026.svg
Hexicantellated 7-simplex
CDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.png
7-simplex t036.svg
Hexiruncinated 7-simplex
CDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.png
7-simplex t0126.svg
Hexicantitruncated 7-simplex
CDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.png
7-simplex t0136.svg
Hexiruncitruncated 7-simplex
CDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.png
7-simplex t0236.svg
Hexiruncicantellated 7-simplex
CDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.png
7-simplex t0146.svg
Hexisteritruncated 7-simplex
CDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.png
7-simplex t0246.svg
Hexistericantellated 7-simplex
CDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.png
7-simplex t0156.svg
Hexipentitruncated 7-simplex
CDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.png
7-simplex t01236.svg
Hexiruncicantitruncated 7-simplex
CDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.png
7-simplex t01246.svg
Hexistericantitruncated 7-simplex
CDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.png
7-simplex t01346.svg
Hexisteriruncitruncated 7-simplex
CDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.png
7-simplex t02346.svg
Hexisteriruncicantellated 7-simplex
CDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.png
7-simplex t01256.svg
Hexipenticantitruncated 7-simplex
CDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.png
7-simplex t01356.svg
Hexipentiruncitruncated 7-simplex
CDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.png
7-simplex t012346.svg
Hexisteriruncicantitruncated 7-simplex
CDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.png
7-simplex t012356.svg
Hexipentiruncicantitruncated 7-simplex
CDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.png
7-simplex t012456.svg
Hexipentistericantitruncated 7-simplex
CDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.png
7-simplex t0123456.svg
Hexipentisteriruncicantitruncated 7-simplex
(Omnitruncated 7-simplex)
CDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.png
Orthogonal projections in A7 Coxeter plane

In seven-dimensional geometry, a hexicated 7-simplex is a convex uniform 7-polytope, including 6th-order truncations (hexication) from the regular 7-simplex.

There are 20 unique hexications for the 7-simplex, including all permutations of truncations, cantellations, runcinations, sterications, and pentellations.

The simple hexicated 7-simplex is also called an expanded 7-simplex, with only the first and last nodes ringed, is constructed by an expansion operation applied to the regular 7-simplex. The highest form, the hexipentisteriruncicantitruncated 7-simplex is more simply called a omnitruncated 7-simplex with all of the nodes ringed.

Contents

Hexicated 7-simplex

Hexicated 7-simplex
Type uniform polyexon
Schläfli symbol t0,6{36}
Coxeter-Dynkin diagrams CDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.png
6-faces
5-faces
4-faces
Cells
Faces
Edges 336
Vertices 56
Vertex figure 5-simplex antiprism
Coxeter group A7, [[36]], order 80640
Properties convex

In seven-dimensional geometry, a hexicated 7-simplex is a convex uniform 7-polytope, a hexication (6th order truncation) of the regular 7-simplex, or alternately can be seen as an expansion operation.

Root vectors

Its 56 vertices represent the root vectors of the simple Lie group A7.

Alternate names

  • Small petated hexadecaexon (acronym: suph) (Jonathan Bowers)[1]

Coordinates

The vertices of the hexicated 7-simplex can be most simply positioned in 8-space as permutations of (0,1,1,1,1,1,1,2). This construction is based on facets of the hexicated 8-orthoplex.

Images

orthographic projections
Ak Coxeter plane A7 A6 A5
Graph 7-simplex t06.svg 7-simplex t06 A6.svg 7-simplex t06 A5.svg
Dihedral symmetry [8] [[7]] [6]
Ak Coxeter plane A4 A3 A2
Graph 7-simplex t06 A4.svg 7-simplex t06 A3.svg 7-simplex t06 A2.svg
Dihedral symmetry [[5]] [4] [[3]]

Hexitruncated 7-simplex

hexitruncated 7-simplex
Type uniform polyexon
Schläfli symbol t0,1,6{36}
Coxeter-Dynkin diagrams CDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.png
6-faces
5-faces
4-faces
Cells
Faces
Edges 1848
Vertices 336
Vertex figure
Coxeter group A7, [36], order 40320
Properties convex

Alternate names

  • Petitruncated octaexon (acronym: puto) (Jonathan Bowers)[2]

Coordinates

The vertices of the hexitruncated 7-simplex can be most simply positioned in 8-space as permutations of (0,1,1,1,1,1,2,3). This construction is based on facets of the hexitruncated 8-orthoplex.

Images

orthographic projections
Ak Coxeter plane A7 A6 A5
Graph 7-simplex t016.svg 7-simplex t016 A6.svg 7-simplex t016 A5.svg
Dihedral symmetry [8] [7] [6]
Ak Coxeter plane A4 A3 A2
Graph 7-simplex t016 A4.svg 7-simplex t016 A3.svg 7-simplex t016 A2.svg
Dihedral symmetry [5] [4] [3]

Hexicantellated 7-simplex

Hexicantellated 7-simplex
Type uniform polyexon
Schläfli symbol t0,2,6{36}
Coxeter-Dynkin diagrams CDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.png
6-faces
5-faces
4-faces
Cells
Faces
Edges 5880
Vertices 840
Vertex figure
Coxeter group A7, [36], order 40320
Properties convex

Alternate names

  • Petirhombated octaexon (acronym: puro) (Jonathan Bowers)[3]

Coordinates

The vertices of the hexicantellated 7-simplex can be most simply positioned in 8-space as permutations of (0,1,1,1,1,2,2,3). This construction is based on facets of the hexicantellated 8-orthoplex.

Images

orthographic projections
Ak Coxeter plane A7 A6 A5
Graph 7-simplex t026.svg 7-simplex t026 A6.svg 7-simplex t026 A5.svg
Dihedral symmetry [8] [7] [6]
Ak Coxeter plane A4 A3 A2
Graph 7-simplex t026 A4.svg 7-simplex t026 A3.svg 7-simplex t026 A2.svg
Dihedral symmetry [5] [4] [3]

Hexiruncinated 7-simplex

Hexiruncinated 7-simplex
Type uniform polyexon
Schläfli symbol t0,3,6{36}
Coxeter-Dynkin diagrams CDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.png
6-faces
5-faces
4-faces
Cells
Faces
Edges 8400
Vertices 1120
Vertex figure
Coxeter group A7, [[36]], order 80640
Properties convex

Alternate names

  • Petiprismated hexadecaexon (acronym: puph) (Jonathan Bowers)[4]

Coordinates

The vertices of the hexiruncinated 7-simplex can be most simply positioned in 8-space as permutations of (0,0,1,1,2,2,2,3). This construction is based on facets of the hexiruncinated 8-orthoplex.

Images

orthographic projections
Ak Coxeter plane A7 A6 A5
Graph 7-simplex t036.svg 7-simplex t036 A6.svg 7-simplex t036 A5.svg
Dihedral symmetry [8] [[7]] [6]
Ak Coxeter plane A4 A3 A2
Graph 7-simplex t036 A4.svg 7-simplex t036 A3.svg 7-simplex t036 A2.svg
Dihedral symmetry [[5]] [4] [[3]]

Hexicantitruncated 7-simplex

Hexicantitruncated 7-simplex
Type uniform polyexon
Schläfli symbol t0,1,2,6{36}
Coxeter-Dynkin diagrams CDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.png
6-faces
5-faces
4-faces
Cells
Faces
Edges 8400
Vertices 1680
Vertex figure
Coxeter group A7, [36], order 40320
Properties convex

Alternate names

  • Petigreatorhombated octaexon (acronym: pugro) (Jonathan Bowers)[5]

Coordinates

The vertices of the hexicantitruncated 7-simplex can be most simply positioned in 8-space as permutations of (0,1,1,1,1,2,3,4). This construction is based on facets of the hexicantitruncated 8-orthoplex.

Images

orthographic projections
Ak Coxeter plane A7 A6 A5
Graph 7-simplex t0126.svg 7-simplex t0126 A6.svg 7-simplex t0126 A5.svg
Dihedral symmetry [8] [7] [6]
Ak Coxeter plane A4 A3 A2
Graph 7-simplex t0126 A4.svg 7-simplex t0126 A3.svg 7-simplex t0126 A2.svg
Dihedral symmetry [5] [4] [3]

Hexiruncitruncated 7-simplex

Hexiruncitruncated 7-simplex
Type uniform polyexon
Schläfli symbol t0,1,3,6{36}
Coxeter-Dynkin diagrams CDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.png
6-faces
5-faces
4-faces
Cells
Faces
Edges 20160
Vertices 3360
Vertex figure
Coxeter group A7, [36], order 40320
Properties convex

Alternate names

  • Petiprismatotruncated octaexon (acronym: pupato) (Jonathan Bowers)[6]

Coordinates

The vertices of the hexiruncitruncated 7-simplex can be most simply positioned in 8-space as permutations of (0,1,1,1,2,2,3,4). This construction is based on facets of the hexiruncitruncated 8-orthoplex.

Images

orthographic projections
Ak Coxeter plane A7 A6 A5
Graph 7-simplex t0136.svg 7-simplex t0136 A6.svg 7-simplex t0136 A5.svg
Dihedral symmetry [8] [7] [6]
Ak Coxeter plane A4 A3 A2
Graph 7-simplex t0136 A4.svg 7-simplex t0136 A3.svg 7-simplex t0136 A2.svg
Dihedral symmetry [5] [4] [3]

Hexiruncicantellated 7-simplex

Hexiruncicantellated 7-simplex
Type uniform polyexon
Schläfli symbol t0,2,3,6{36}
Coxeter-Dynkin diagrams CDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.png
6-faces
5-faces
4-faces
Cells
Faces
Edges 16800
Vertices 3360
Vertex figure
Coxeter group A7, [36], order 40320
Properties convex

In seven-dimensional geometry, a hexiruncicantellated 7-simplex is a uniform 7-polytope.

Alternate names

  • Petiprismatorhombated octaexon (acronym: pupro) (Jonathan Bowers)[7]

Coordinates

The vertices of the hexiruncicantellated 7-simplex can be most simply positioned in 8-space as permutations of (0,1,1,1,2,3,3,4). This construction is based on facets of the hexiruncicantellated 8-orthoplex.

Images

orthographic projections
Ak Coxeter plane A7 A6 A5
Graph 7-simplex t0236.svg 7-simplex t0236 A6.svg 7-simplex t0236 A5.svg
Dihedral symmetry [8] [7] [6]
Ak Coxeter plane A4 A3 A2
Graph 7-simplex t0236 A4.svg 7-simplex t0236 A3.svg 7-simplex t0236 A2.svg
Dihedral symmetry [5] [4] [3]

Hexisteritruncated 7-simplex

hexisteritruncated 7-simplex
Type uniform polyexon
Schläfli symbol t0,1,4,6{36}
Coxeter-Dynkin diagrams CDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.png
6-faces
5-faces
4-faces
Cells
Faces
Edges 20160
Vertices 3360
Vertex figure
Coxeter group A7, [36], order 40320
Properties convex

Alternate names

  • Peticellitruncated octaexon (acronym: pucto) (Jonathan Bowers)[8]

Coordinates

The vertices of the hexisteritruncated 7-simplex can be most simply positioned in 8-space as permutations of (0,1,1,2,2,2,3,4). This construction is based on facets of the hexisteritruncated 8-orthoplex.

Images

orthographic projections
Ak Coxeter plane A7 A6 A5
Graph 7-simplex t0146.svg 7-simplex t0146 A6.svg 7-simplex t0146 A5.svg
Dihedral symmetry [8] [7] [6]
Ak Coxeter plane A4 A3 A2
Graph 7-simplex t0146 A4.svg 7-simplex t0146 A3.svg 7-simplex t0146 A2.svg
Dihedral symmetry [5] [4] [3]

Hexistericantellated 7-simplex

hexistericantellated 7-simplex
Type uniform polyexon
Schläfli symbol t0,2,4,6{36}
Coxeter-Dynkin diagrams CDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.png
6-faces t0,2,4{3,3,3,3,3}

{}xt0,2,4{3,3,3,3}
{3}xt0,2{3,3,3}
t0,2{3,3}xt0,2{3,3}

5-faces
4-faces
Cells
Faces
Edges 30240
Vertices 5040
Vertex figure
Coxeter group A7, [[36]], order 80640
Properties convex

Alternate names

  • Peticellirhombihexadecaexon (acronym: pucroh) (Jonathan Bowers)[9]

Coordinates

The vertices of the hexistericantellated 7-simplex can be most simply positioned in 8-space as permutations of (0,1,1,2,2,3,3,4). This construction is based on facets of the hexistericantellated 8-orthoplex.

Images

orthographic projections
Ak Coxeter plane A7 A6 A5
Graph 7-simplex t0246.svg 7-simplex t0246 A6.svg 7-simplex t0246 A5.svg
Dihedral symmetry [8] [[7]] [6]
Ak Coxeter plane A4 A3 A2
Graph 7-simplex t0246 A4.svg 7-simplex t0246 A3.svg 7-simplex t0246 A2.svg
Dihedral symmetry [[5]] [4] [[3]]

Hexipentitruncated 7-simplex

Hexipentitruncated 7-simplex
Type uniform polyexon
Schläfli symbol t0,1,5,6{36}
Coxeter-Dynkin diagrams CDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.png
6-faces
5-faces
4-faces
Cells
Faces
Edges 8400
Vertices 1680
Vertex figure
Coxeter group A7, [[36]], order 80640
Properties convex

Alternate names

  • Petiteritruncated hexadecaexon (acronym: putath) (Jonathan Bowers)[10]

Coordinates

The vertices of the hexipentitruncated 7-simplex can be most simply positioned in 8-space as permutations of (0,1,2,2,2,2,3,4). This construction is based on facets of the hexipentitruncated 8-orthoplex.

Images

orthographic projections
Ak Coxeter plane A7 A6 A5
Graph 7-simplex t0156.svg 7-simplex t0156 A6.svg 7-simplex t0156 A5.svg
Dihedral symmetry [8] [[7]] [6]
Ak Coxeter plane A4 A3 A2
Graph 7-simplex t0156 A4.svg 7-simplex t0156 A3.svg 7-simplex t0156 A2.svg
Dihedral symmetry [[5]] [4] [[3]]

Hexiruncicantitruncated 7-simplex

Hexiruncicantitruncated 7-simplex
Type uniform polyexon
Schläfli symbol t0,1,2,3,6{36}
Coxeter-Dynkin diagrams CDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.png
6-faces
5-faces
4-faces
Cells
Faces
Edges 30240
Vertices 6720
Vertex figure
Coxeter group A7, [36], order 40320
Properties convex

Alternate names

  • Petigreatoprismated octaexon (acronym: pugopo) (Jonathan Bowers)[11]

Coordinates

The vertices of the hexiruncicantitruncated 7-simplex can be most simply positioned in 8-space as permutations of (0,1,1,2,2,3,4,5). This construction is based on facets of the hexiruncicantitruncated 8-orthoplex.

Images

orthographic projections
Ak Coxeter plane A7 A6 A5
Graph 7-simplex t01236.svg 7-simplex t01236 A6.svg 7-simplex t01236 A5.svg
Dihedral symmetry [8] [[7]] [6]
Ak Coxeter plane A4 A3 A2
Graph 7-simplex t01236 A4.svg 7-simplex t01236 A3.svg 7-simplex t01236 A2.svg
Dihedral symmetry [[5]] [4] [[3]]

Hexistericantitruncated 7-simplex

Hexistericantitruncated 7-simplex
Type uniform polyexon
Schläfli symbol t0,1,2,4,6{36}
Coxeter-Dynkin diagrams CDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.png
6-faces
5-faces
4-faces
Cells
Faces
Edges 50400
Vertices 10080
Vertex figure
Coxeter group A7, [36], order 40320
Properties convex

Alternate names

  • Peticelligreatorhombated octaexon (acronym: pucagro) (Jonathan Bowers)[12]

Coordinates

The vertices of the hexistericantitruncated 7-simplex can be most simply positioned in 8-space as permutations of (0,1,1,2,2,3,4,5). This construction is based on facets of the hexistericantitruncated 8-orthoplex.

Images

orthographic projections
Ak Coxeter plane A7 A6 A5
Graph 7-simplex t01246.svg 7-simplex t01246 A6.svg 7-simplex t01246 A5.svg
Dihedral symmetry [8] [[7]] [6]
Ak Coxeter plane A4 A3 A2
Graph 7-simplex t01246 A4.svg 7-simplex t01246 A3.svg 7-simplex t01246 A2.svg
Dihedral symmetry [[5]] [4] [[3]]

Hexisteriruncitruncated 7-simplex

Hexisteriruncitruncated 7-simplex
Type uniform polyexon
Schläfli symbol t0,1,3,4,6{36}
Coxeter-Dynkin diagrams CDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.png
6-faces
5-faces
4-faces
Cells
Faces
Edges 45360
Vertices 10080
Vertex figure
Coxeter group A7, [36], order 40320
Properties convex

Alternate names

  • Peticelliprismatotruncated octaexon (acronym: pucpato) (Jonathan Bowers)[13]

Coordinates

The vertices of the hexisteriruncitruncated 7-simplex can be most simply positioned in 8-space as permutations of (0,1,1,2,3,3,4,5). This construction is based on facets of the hexisteriruncitruncated 8-orthoplex.

Images

orthographic projections
Ak Coxeter plane A7 A6 A5
Graph 7-simplex t01346.svg 7-simplex t01346 A6.svg 7-simplex t01346 A5.svg
Dihedral symmetry [8] [7] [6]
Ak Coxeter plane A4 A3 A2
Graph 7-simplex t01346 A4.svg 7-simplex t01346 A3.svg 7-simplex t01346 A2.svg
Dihedral symmetry [5] [4] [3]

Hexisteriruncicantellated 7-simplex

Hexisteriruncitruncated 7-simplex
Type uniform polyexon
Schläfli symbol t0,2,3,4,6{36}
Coxeter-Dynkin diagrams CDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.png
6-faces
5-faces
4-faces
Cells
Faces
Edges 45360
Vertices 10080
Vertex figure
Coxeter group A7, [[36]], order 80640
Properties convex

Alternate names

  • Peticelliprismatorhombihexadecaexon (acronym: pucproh) (Jonathan Bowers)[14]

Coordinates

The vertices of the hexisteriruncitruncated 7-simplex can be most simply positioned in 8-space as permutations of (0,1,1,2,3,4,4,5). This construction is based on facets of the hexisteriruncitruncated 8-orthoplex.

Images

orthographic projections
Ak Coxeter plane A7 A6 A5
Graph 7-simplex t02346.svg 7-simplex t02346 A6.svg 7-simplex t02346 A5.svg
Dihedral symmetry [8] [[7]] [6]
Ak Coxeter plane A4 A3 A2
Graph 7-simplex t02346 A4.svg 7-simplex t02346 A3.svg 7-simplex t02346 A2.svg
Dihedral symmetry [[5]] [4] [[3]]

Hexipenticantitruncated 7-simplex

hexipenticantitruncated 7-simplex
Type uniform polyexon
Schläfli symbol t0,1,2,5,6{36}
Coxeter-Dynkin diagrams CDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.png
6-faces
5-faces
4-faces
Cells
Faces
Edges 30240
Vertices 6720
Vertex figure
Coxeter group A7, [36], order 40320
Properties convex

Alternate names

  • Petiterigreatorhombated octaexon (acronym: putagro) (Jonathan Bowers)[15]

Coordinates

The vertices of the hexipenticantitruncated 7-simplex can be most simply positioned in 8-space as permutations of (0,1,2,2,2,3,4,5). This construction is based on facets of the hexipenticantitruncated 8-orthoplex.

Images

orthographic projections
Ak Coxeter plane A7 A6 A5
Graph 7-simplex t01256.svg 7-simplex t01256 A6.svg 7-simplex t01256 A5.svg
Dihedral symmetry [8] [7] [6]
Ak Coxeter plane A4 A3 A2
Graph 7-simplex t01256 A4.svg 7-simplex t01256 A3.svg 7-simplex t01256 A2.svg
Dihedral symmetry [5] [4] [3]

Hexipentiruncitruncated 7-simplex

Hexisteriruncicantitruncated 7-simplex
Type uniform polyexon
Schläfli symbol t0,1,2,3,5,6{36}
Coxeter-Dynkin diagrams CDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.png
6-faces
5-faces
4-faces
Cells
Faces
Edges 80640
Vertices 20160
Vertex figure
Coxeter group A7, [[36]], order 80640
Properties convex

Alternate names

  • Petiteriprismatotruncated hexadecaexon (acronym: putpath) (Jonathan Bowers)[16]

Coordinates

The vertices of the hexisteriruncicantitruncated 7-simplex can be most simply positioned in 8-space as permutations of (0,1,1,2,3,4,5,6). This construction is based on facets of the hexisteriruncicantitruncated 8-orthoplex.

Images

orthographic projections
Ak Coxeter plane A7 A6 A5
Graph 7-simplex t012346.svg 7-simplex t012346 A6.svg 7-simplex t012346 A5.svg
Dihedral symmetry [8] [[7]] [6]
Ak Coxeter plane A4 A3 A2
Graph 7-simplex t012346 A4.svg 7-simplex t012346 A3.svg 7-simplex t012346 A2.svg
Dihedral symmetry [[5]] [4] [[3]]

Hexisteriruncicantitruncated 7-simplex

Hexisteriruncicantitruncated 7-simplex
Type uniform polyexon
Schläfli symbol t0,1,2,3,4,6{36}
Coxeter-Dynkin diagrams CDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.png
6-faces
5-faces
4-faces
Cells
Faces
Edges 80640
Vertices 20160
Vertex figure
Coxeter group A7, [36], order 40320
Properties convex

Alternate names

  • Petigreatocellated octaexon (acronym: pugaco) (Jonathan Bowers)[17]

Coordinates

The vertices of the hexisteriruncicantitruncated 7-simplex can be most simply positioned in 8-space as permutations of (0,1,1,2,3,4,5,6). This construction is based on facets of the hexisteriruncicantitruncated 8-orthoplex.

Images

orthographic projections
Ak Coxeter plane A7 A6 A5
Graph 7-simplex t012346.svg 7-simplex t012346 A6.svg 7-simplex t012346 A5.svg
Dihedral symmetry [8] [[7]] [6]
Ak Coxeter plane A4 A3 A2
Graph 7-simplex t012346 A4.svg 7-simplex t012346 A3.svg 7-simplex t012346 A2.svg
Dihedral symmetry [[5]] [4] [[3]]

Hexipentiruncicantitruncated 7-simplex

Hexipentiruncicantitruncated 7-simplex
Type uniform polyexon
Schläfli symbol t0,1,2,3,5,6{36}
Coxeter-Dynkin diagrams CDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.png
6-faces
5-faces
4-faces
Cells
Faces
Edges 80640
Vertices 20160
Vertex figure
Coxeter group A7, [36], order 40320
Properties convex

Alternate names

  • Petiterigreatoprismated octaexon (acronym: putgapo) (Jonathan Bowers)[18]

Coordinates

The vertices of the hexipentiruncicantitruncated 7-simplex can be most simply positioned in 8-space as permutations of (0,1,2,2,3,4,5,6). This construction is based on facets of the hexipentiruncicantitruncated 8-orthoplex.

Images

orthographic projections
Ak Coxeter plane A7 A6 A5
Graph 7-simplex t012356.svg 7-simplex t012356 A6.svg 7-simplex t012356 A5.svg
Dihedral symmetry [8] [[7]] [6]
Ak Coxeter plane A4 A3 A2
Graph 7-simplex t012356 A4.svg 7-simplex t012356 A3.svg 7-simplex t012356 A2.svg
Dihedral symmetry [[5]] [4] [[3]]

Hexipentistericantitruncated 7-simplex

Hexipentistericantitruncated 7-simplex
Type uniform polyexon
Schläfli symbol t0,1,2,4,5,6{36}
Coxeter-Dynkin diagrams CDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.png
6-faces
5-faces
4-faces
Cells
Faces
Edges 80640
Vertices 20160
Vertex figure
Coxeter group A7, [[36]], order 80640
Properties convex

Alternate names

  • Petitericelligreatorhombihexadecaexon (acronym: putcagroh) (Jonathan Bowers)[19]

Coordinates

The vertices of the hexipentistericantitruncated 7-simplex can be most simply positioned in 8-space as permutations of (0,1,2,3,3,4,5,6). This construction is based on facets of the hexipentistericantitruncated 8-orthoplex.

Images

orthographic projections
Ak Coxeter plane A7 A6 A5
Graph 7-simplex t012456.svg 7-simplex t012456 A6.svg 7-simplex t012456 A5.svg
Dihedral symmetry [8] [[7]] [6]
Ak Coxeter plane A4 A3 A2
Graph 7-simplex t012456 A4.svg 7-simplex t012456 A3.svg 7-simplex t012456 A2.svg
Dihedral symmetry [[5]] [4] [[3]]

Omnitruncated 7-simplex

Omnitruncated 7-simplex
Type uniform polyexon
Schläfli symbol t0,1,2,3,4,5,6{36}
Coxeter-Dynkin diagrams CDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.png
6-faces
5-faces
4-faces
Cells
Faces
Edges 141120
Vertices 40320
Vertex figure Irr. 6-simplex
Coxeter group A7, [[36]], order 80640
Properties convex

The omnitruncated 7-simplex is composed of 40320 (8 factorial) vertices and is the largest uniform 7-polytope in the A7 symmetry of the regular 7-simplex. It can also be called the hexipentisteriruncicantitruncated 7-simplex which is the long name for the omnitruncation for 7 dimensions, with all reflective mirrors active.

Permutohedron and related tessellation

The omnitruncated 7-simplex is the permutohedron of order 8. The omnitruncated 7-simplex is a zonotope, the Minkowski sum of eight line segments parallel to the eight lines through the origin and the eight vertices of the 7-simplex.

Like all uniform omnitruncated n-simplices, the omnitruncated 7-simplex can tessellate space by itself, in this case 7-dimensional space with three facets around each ridge. It has Coxeter-Dynkin diagram of CDel node 1.pngCDel split1.pngCDel nodes 11.pngCDel 3ab.pngCDel nodes 11.pngCDel 3ab.pngCDel nodes 11.pngCDel split2.pngCDel node 1.png.

Alternate names

  • Great petated hexadecaexon (Acronym: guph) (Jonathan Bowers)[20]

Coordinates

The vertices of the omnitruncated 7-simplex can be most simply positioned in 8-space as permutations of (0,1,2,3,4,5,6,7). This construction is based on facets of the hexipentisteriruncicantitruncated 8-orthoplex, t0,1,2,3,4,5,6{36,4}, CDel node.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.png.

Images

orthographic projections
Ak Coxeter plane A7 A6 A5
Graph 7-simplex t0123456.svg 7-simplex t0123456 A6.svg 7-simplex t0123456 A5.svg
Dihedral symmetry [8] [[7]] [6]
Ak Coxeter plane A4 A3 A2
Graph 7-simplex t0123456 A4.svg 7-simplex t0123456 A3.svg 7-simplex t0123456 A2.svg
Dihedral symmetry [[5]] [4] [[3]]

Related polytopes

These polytope are a part of 71 uniform 7-polytopes with A7 symmetry.

7-simplex t0.svg
t0
7-simplex t1.svg
t1
7-simplex t2.svg
t2
7-simplex t3.svg
t3
7-simplex t01.svg
t0,1
7-simplex t02.svg
t0,2
7-simplex t12.svg
t1,2
7-simplex t03.svg
t0,3
7-simplex t13.svg
t1,3
7-simplex t23.svg
t2,3
7-simplex t04.svg
t0,4
7-simplex t14.svg
t1,4
7-simplex t24.svg
t2,4
7-simplex t05.svg
t0,5
7-simplex t15.svg
t1,5
7-simplex t06.svg
t0,6
7-simplex t012.svg
t0,1,2
7-simplex t013.svg
t0,1,3
7-simplex t023.svg
t0,2,3
7-simplex t123.svg
t1,2,3
7-simplex t014.svg
t0,1,4
7-simplex t024.svg
t0,2,4
7-simplex t124.svg
t1,2,4
7-simplex t034.svg
t0,3,4
7-simplex t134.svg
t1,3,4
7-simplex t234.svg
t2,3,4
7-simplex t015.svg
t0,1,5
7-simplex t025.svg
t0,2,5
7-simplex t125.svg
t1,2,5
7-simplex t035.svg
t0,3,5
7-simplex t135.svg
t1,3,5
7-simplex t045.svg
t0,4,5
7-simplex t016.svg
t0,1,6
7-simplex t026.svg
t0,2,6
7-simplex t036.svg
t0,3,6
7-simplex t0123.svg
t0,1,2,3
7-simplex t0124.svg
t0,1,2,4
7-simplex t0134.svg
t0,1,3,4
7-simplex t0234.svg
t0,2,3,4
7-simplex t1234.svg
t1,2,3,4
7-simplex t0125.svg
t0,1,2,5
7-simplex t0135.svg
t0,1,3,5
7-simplex t0235.svg
t0,2,3,5
7-simplex t1235.svg
t1,2,3,5
7-simplex t0145.svg
t0,1,4,5
7-simplex t0245.svg
t0,2,4,5
7-simplex t1245.svg
t1,2,4,5
7-simplex t0345.svg
t0,3,4,5
7-simplex t0126.svg
t0,1,2,6
7-simplex t0136.svg
t0,1,3,6
7-simplex t0236.svg
t0,2,3,6
7-simplex t0146.svg
t0,1,4,6
7-simplex t0246.svg
t0,2,4,6
7-simplex t0156.svg
t0,1,5,6
7-simplex t01234.svg
t0,1,2,3,4
7-simplex t01235.svg
t0,1,2,3,5
7-simplex t01245.svg
t0,1,2,4,5
7-simplex t01345.svg
t0,1,3,4,5
7-simplex t02345.svg
t0,2,3,4,5
7-simplex t12345.svg
t1,2,3,4,5
7-simplex t01236.svg
t0,1,2,3,6
7-simplex t01246.svg
t0,1,2,4,6
7-simplex t01346.svg
t0,1,3,4,6
7-simplex t02346.svg
t0,2,3,4,6
7-simplex t01256.svg
t0,1,2,5,6
7-simplex t01356.svg
t0,1,3,5,6
7-simplex t012345.svg
t0,1,2,3,4,5
7-simplex t012346.svg
t0,1,2,3,4,6
7-simplex t012356.svg
t0,1,2,3,5,6
7-simplex t012456.svg
t0,1,2,4,5,6
7-simplex t0123456.svg
t0,1,2,3,4,5,6

Notes

  1. ^ Klitizing, (x3o3o3o3o3o3x - suph)
  2. ^ Klitizing, (x3x3o3o3o3o3x- puto)
  3. ^ Klitizing, (x3o3x3o3o3o3x - puro)
  4. ^ Klitizing, (x3o3o3x3o3o3x - puph)
  5. ^ Klitizing, (x3o3o3o3x3o3x - pugro)
  6. ^ Klitizing, (x3x3x3o3o3o3x - pupato)
  7. ^ Klitizing, (x3o3x3x3o3o3x - pupro)
  8. ^ Klitizing, (x3x3o3o3x3o3x - pucto)
  9. ^ Klitizing, (x3o3x3o3x3o3x - pucroh)
  10. ^ Klitizing, (x3x3o3o3o3x3x - putath)
  11. ^ Klitizing, (x3x3x3x3o3o3x - pugopo)
  12. ^ Klitizing, (x3x3x3o3x3o3x - pucagro)
  13. ^ Klitizing, (x3x3o3x3x3o3x - pucpato)
  14. ^ Klitizing, (x3o3x3x3x3o3x - pucproh)
  15. ^ Klitizing, (x3x3x3o3o3x3x - putagro)
  16. ^ Klitizing, (x3x3x3x3o3x3x - putpath)
  17. ^ Klitizing, (x3x3x3x3x3o3x - pugaco)
  18. ^ Klitzing, (x3x3x3x3o3x3x - putgapo)
  19. ^ Klitizing, (x3x3x3o3x3x3x - putcagroh)
  20. ^ Klitizing, (x3x3x3x3x3x3x - guph)

References

  • H.S.M. Coxeter:
    • H.S.M. Coxeter, Regular Polytopes, 3rd Edition, Dover New York, 1973
    • Kaleidoscopes: Selected Writings of H.S.M. Coxeter, editied by F. Arthur Sherk, Peter McMullen, Anthony C. Thompson, Asia Ivic Weiss, Wiley-Interscience Publication, 1995, ISBN 978-0-471-01003-6, wiley.com
      • (Paper 22) H.S.M. Coxeter, Regular and Semi Regular Polytopes I, [Math. Zeit. 46 (1940) 380-407, MR 2,10]
      • (Paper 23) H.S.M. Coxeter, Regular and Semi-Regular Polytopes II, [Math. Zeit. 188 (1985) 559-591]
      • (Paper 24) H.S.M. Coxeter, Regular and Semi-Regular Polytopes III, [Math. Zeit. 200 (1988) 3-45]
  • Norman Johnson Uniform Polytopes, Manuscript (1991)
    • N.W. Johnson: The Theory of Uniform Polytopes and Honeycombs, PhD (1966)
  • Richard Klitzing, , 7D x3o3o3o3o3o3x - suph, x3x3o3o3o3o3x- puto, x3o3x3o3o3o3x - puro, x3o3o3x3o3o3x - puph, x3o3o3o3x3o3x - pugro, x3x3x3o3o3o3x - pupato, x3o3x3x3o3o3x - pupro, x3x3o3o3x3o3x - pucto, x3o3x3o3x3o3x - pucroh, x3x3o3o3o3x3x - putath, x3x3x3x3o3o3x - pugopo, x3x3x3o3x3o3x - pucagro, x3x3o3x3x3o3x - pucpato, x3o3x3x3x3o3x - pucproh, x3x3x3o3o3x3x - putagro, x3x3x3x3o3x3x - putpath, x3x3x3x3x3o3x - pugaco, x3x3x3x3o3x3x - putgapo, x3x3x3o3x3x3x - putcagroh, x3x3x3x3x3x3x - guph

External links


Wikimedia Foundation. 2010.

Игры ⚽ Поможем сделать НИР

Look at other dictionaries:

  • Hexicated 7-cube — Orthogonal projections in BC4 Coxeter plane 7 cube …   Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”