10-demicube

10-demicube
Demidekeract
(10-demicube)
Demidekeract ortho petrie.svg
Petrie polygon projection
Type Uniform 10-polytope
Family demihypercube
Coxeter symbol 171
Schläfli symbol {31,7,1}
h{4,3,3,3,3,3,3,3,3}
s{2,2,2,2,2,2,2,2,2}
Coxeter-Dynkin diagram CDel nodes 10ru.pngCDel split2.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png
CDel node h.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png
CDel node h.pngCDel 2.pngCDel node h.pngCDel 2.pngCDel node h.pngCDel 2.pngCDel node h.pngCDel 2.pngCDel node h.pngCDel 2.pngCDel node h.pngCDel 2.pngCDel node h.pngCDel 2.pngCDel node h.pngCDel 2.pngCDel node h.pngCDel 2.pngCDel node h.png
9-faces 532 20 {31,6,1}Demienneract ortho petrie.svg
512 {38}9-simplex t0.svg
8-faces 5300 180 {31,5,1}Demiocteract ortho petrie.svg
5120 {37}8-simplex t0.svg
7-faces 24000 960 {31,4,1}Demihepteract ortho petrie.svg
23040 {36}7-simplex t0.svg
6-faces 64800 3360 {31,3,1}Demihexeract ortho petrie.svg
61440 {35}6-simplex t0.svg
5-faces 115584 8064 {31,2,1}Demipenteract graph ortho.svg
107520 {34}5-simplex t0.svg
4-faces 142464 13440 {31,1,1}Cross graph 4.svg
129024 {33}4-simplex t0.svg
Cells 122880 15360 {31,0,1}3-simplex t0.svg
107520 {3,3}3-simplex t0.svg
Faces 61440 {3}2-simplex t0.svg
Edges 11520
Vertices 512
Vertex figure Rectified 9-simplex
Rectified 9-simplex.png
Symmetry group D10, [37,1,1] = [1+,4,38]
[29]+
Dual ?
Properties convex

In geometry, a demidekeract or 10-demicube is a uniform 10-polytope, constructed from the 10-cube with alternated vertices deleted. It is part of a dimensionally infinite family of uniform polytopes called demihypercubes.

Coxeter named this polytope as 171 from its Coxeter-Dynkin diagram, with a ring on one of the 1-length Coxeter-Dynkin diagram branches.

Contents

Cartesian coordinates

Cartesian coordinates for the vertices of a demidekeract centered at the origin are alternate halves of the dekeract:

(±1,±1,±1,±1,±1,±1,±1,±1,±1,±1)

with an odd number of plus signs.

Images

10-demicube graph.png
B10 coxeter plane
10-demicube.svg
D10 coxeter plane
(Vertices are colored by multiplicity: red, orange, yellow, green = 1,2,4,8)

References

  • H.S.M. Coxeter:
    • Coxeter, Regular Polytopes, (3rd edition, 1973), Dover edition, ISBN 0-486-61480-8, p.296, Table I (iii): Regular Polytopes, three regular polytopes in n-dimensions (n≥5)
    • H.S.M. Coxeter, Regular Polytopes, 3rd Edition, Dover New York, 1973, p.296, Table I (iii): Regular Polytopes, three regular polytopes in n-dimensions (n≥5)
    • Kaleidoscopes: Selected Writings of H.S.M. Coxeter, editied by F. Arthur Sherk, Peter McMullen, Anthony C. Thompson, Asia Ivic Weiss, Wiley-Interscience Publication, 1995, ISBN 978-0-471-01003-6 [1]
      • (Paper 22) H.S.M. Coxeter, Regular and Semi Regular Polytopes I, [Math. Zeit. 46 (1940) 380-407, MR 2,10]
      • (Paper 23) H.S.M. Coxeter, Regular and Semi-Regular Polytopes II, [Math. Zeit. 188 (1985) 559-591]
      • (Paper 24) H.S.M. Coxeter, Regular and Semi-Regular Polytopes III, [Math. Zeit. 200 (1988) 3-45]
  • John H. Conway, Heidi Burgiel, Chaim Goodman-Strass, The Symmetries of Things 2008, ISBN 978-1-56881-220-5 (Chapter 26. pp. 409: Hemicubes: 1n1)
  • Norman Johnson Uniform Polytopes, Manuscript (1991)
    • N.W. Johnson: The Theory of Uniform Polytopes and Honeycombs, Ph.D. (1966)
  • Richard Klitzing, 10D uniform polytopes (polyxenna), x3o3o *b3o3o3o3o3o3o3o - hede

External links


Wikimedia Foundation. 2010.

Игры ⚽ Поможем написать реферат

Look at other dictionaries:

  • 6-demicube — Demihexeract (6 demicube) Petrie polygon projection Type Uniform 6 polytope Family demihypercube Schläfli symbol {3,33,1} h{4,3,3,3,3} s{2,2,2,2,2} …   Wikipedia

  • 5-demicube — Demipenteract (5 demicube) Petrie polygon projection Type Uniform 5 polytope Family (Dn) 5 demicube Families (En) k21 polytope 1k2 poly …   Wikipedia

  • 7-demicube — Demihepteract (7 demicube) Petrie polygon projection Type Uniform 7 polytope Family demihypercube Coxeter symbol 141 Schläfli symbol …   Wikipedia

  • 9-demicube — Demienneract (9 demicube) Petrie polygon Type Uniform 9 polytope Family demihypercube Coxeter symbol 161 Schläfli symbol …   Wikipedia

  • 8-demicube — Demiocteract (8 demicube) Petrie polygon projection Type Uniform 8 polytope Family demihypercube Coxeter symbol 151 …   Wikipedia

  • Demihypercube — Not to be confused with Hemicube (geometry). Alternation of the n cube yields one of two n demicubes, as in this 3 dimensional illustration of the two tetrahedra that arise as the 3 demicubes of the 3 cube. In geometry, demihypercubes (also… …   Wikipedia

  • Coxeter group — In mathematics, a Coxeter group, named after H.S.M. Coxeter, is an abstract group that admits a formal description in terms of mirror symmetries. Indeed, the finite Coxeter groups are precisely the finite Euclidean reflection groups; the symmetry …   Wikipedia

  • 16-cell — Regular hexadecachoron (16 cell) (4 orthoplex) Schlegel diagram (vertices and edges) Type Convex regular 4 polytope Schläfli symbo …   Wikipedia

  • Cube — This article is about the geometric shape. For other uses, see Cube (disambiguation). Regular Hexahedron (Click here for rotating model) Type Platonic solid Elements F = 6, E = 12 V = 8 (χ = 2) …   Wikipedia

  • Tetrahedron — For the academic journal, see Tetrahedron (journal). Regular Tetrahedron (Click here for rotating model) Type Platonic solid Elements F = 4, E = 6 V = 4 (χ = 2) Faces by s …   Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”