Pentellated 6-cube

Pentellated 6-cube
6-cube t0.svg
6-cube
CDel node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png
6-cube t5.svg
6-orthoplex
CDel node.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.png
6-cube t05.svg
Pentellated 6-cube
CDel node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.png
6-cube t015.svg
Pentitruncated 6-cube
CDel node 1.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.png
6-cube t025.svg
Penticantellated 6-cube
CDel node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.png
6-cube t0125.svg
Penticantitruncated 6-cube
CDel node 1.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.png
6-cube t0135.svg
Pentiruncitruncated 6-cube
CDel node 1.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.png
6-cube t0235.svg
Pentiruncicantellated 6-cube
CDel node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.png
6-cube t01235.svg
Pentiruncicantitruncated 6-cube
CDel node 1.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.png
6-cube t0145.svg
Pentisteritruncated 6-cube
CDel node 1.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.png
6-cube t01245.svg
Pentistericantitruncated 6-cube
CDel node 1.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.png
6-cube t012345.svg
Omnitruncated 6-cube
CDel node 1.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.png
Orthogonal projections in BC6 Coxeter plane

In six-dimensional geometry, a pentellated 6-cube is a convex uniform 6-polytope with 5th order truncations of the regular 6-cube.

There are unique 16 degrees of pentellations of the 6-cube with permutations of truncations, cantellations, runcinations, and sterications. The simple pentellated 6-cube is also called an expanded 6-cube, constructed by an expansion operation applied to the regular 6-cube. The highest form, the pentisteriruncicantitruncated 6-cube, is called an omnitruncated 6-cube with all of the nodes ringed. Six of them are better constructed from the 6-orthoplex given at pentellated 6-orthoplex.

Contents

Pentellated 6-cube

Pentellated 6-cube
Type Uniform polypeton
Schläfli symbol t0,5{4,3,3,3,3}
Coxeter-Dynkin diagram CDel node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.png
5-faces
4-faces
Cells
Faces
Edges 1920
Vertices 384
Vertex figure 5-cell antiprism
Coxeter group BC6, [4,3,3,3,3]
Properties convex

Alternate names

  • Pentellated 6-orthoplex
  • Expanded 6-cube, expanded 6-orthoplex
  • Small teri-hexeractihexacontitetrapeton (Acronym: stoxog) (Jonathan Bowers)[1]

Images

orthographic projections
Coxeter plane B6 B5 B4
Graph 6-cube t05.svg 6-cube t05 B5.svg 6-cube t05 B4.svg
Dihedral symmetry [12] [10] [8]
Coxeter plane B3 B2
Graph 6-cube t05 B3.svg 6-cube t05 B2.svg
Dihedral symmetry [6] [4]
Coxeter plane A5 A3
Graph 6-cube t05 A5.svg 6-cube t05 A3.svg
Dihedral symmetry [6] [4]

Pentitruncated 6-cube

Pentitruncated 6-cube
Type uniform polypeton
Schläfli symbol t0,1,5{4,3,3,3,3}
Coxeter-Dynkin diagrams CDel node 1.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.png
5-faces
4-faces
Cells
Faces
Edges 8640
Vertices 1920
Vertex figure
Coxeter groups BC6, [4,3,3,3,3]
Properties convex

Alternate names

  • Teritruncated hexeract (Acronym: tacog) (Jonathan Bowers)[2]

Images

orthographic projections
Coxeter plane B6 B5 B4
Graph 6-cube t015.svg 6-cube t015 B5.svg 6-cube t015 B4.svg
Dihedral symmetry [12] [10] [8]
Coxeter plane B3 B2
Graph 6-cube t015 B3.svg 6-cube t015 B2.svg
Dihedral symmetry [6] [4]
Coxeter plane A5 A3
Graph 6-cube t015 A5.svg 6-cube t015 A3.svg
Dihedral symmetry [6] [4]

Penticantellated 6-cube

Penticantellated 6-cube
Type uniform polypeton
Schläfli symbol t0,2,5{4,3,3,3,3}
Coxeter-Dynkin diagrams CDel node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.png
5-faces
4-faces
Cells
Faces
Edges 21120
Vertices 3840
Vertex figure
Coxeter groups BC6, [4,3,3,3,3]
Properties convex

Alternate names

  • Terirhombated hexeract (Acronym: topag) (Jonathan Bowers)[3]

Images

orthographic projections
Coxeter plane B6 B5 B4
Graph 6-cube t025.svg 6-cube t025 B5.svg 6-cube t025 B4.svg
Dihedral symmetry [12] [10] [8]
Coxeter plane B3 B2
Graph 6-cube t025 B3.svg 6-cube t025 B2.svg
Dihedral symmetry [6] [4]
Coxeter plane A5 A3
Graph 6-cube t025 A5.svg 6-cube t025 A3.svg
Dihedral symmetry [6] [4]

Penticantitruncated 6-cube

Penticantitruncated 6-cube
Type uniform polypeton
Schläfli symbol t0,1,2,5{4,3,3,3,3}
Coxeter-Dynkin diagrams CDel node 1.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.png
5-faces
4-faces
Cells
Faces
Edges 30720
Vertices 7680
Vertex figure
Coxeter groups BC6, [4,3,3,3,3]
Properties convex

Alternate names

  • Terigreatorhombated hexeract (Acronym: togrix) (Jonathan Bowers)[4]

Images

orthographic projections
Coxeter plane B6 B5 B4
Graph 6-cube t0125.svg 6-cube t0125 B5.svg 6-cube t0125 B4.svg
Dihedral symmetry [12] [10] [8]
Coxeter plane B3 B2
Graph 6-cube t0125 B3.svg 6-cube t0125 B2.svg
Dihedral symmetry [6] [4]
Coxeter plane A5 A3
Graph 6-cube t0125 A5.svg 6-cube t0125 A3.svg
Dihedral symmetry [6] [4]

Pentiruncitruncated 6-cube

Pentiruncitruncated 6-cube
Type uniform polypeton
Schläfli symbol t0,1,3,5{4,3,3,3,3}
Coxeter-Dynkin diagrams CDel node 1.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.png
5-faces
4-faces
Cells
Faces
Edges 151840
Vertices 11520
Vertex figure
Coxeter groups BC6, [4,3,3,3,3]
Properties convex

Alternate names

  • Tericellirhombated hexacontitetrapeton (Acronym: tocrag) (Jonathan Bowers)[5]

Images

orthographic projections
Coxeter plane B6 B5 B4
Graph 6-cube t0135.svg 6-cube t0135 B5.svg 6-cube t0135 B4.svg
Dihedral symmetry [12] [10] [8]
Coxeter plane B3 B2
Graph 6-cube t0135 B3.svg 6-cube t0135 B2.svg
Dihedral symmetry [6] [4]
Coxeter plane A5 A3
Graph 6-cube t0135 A5.svg 6-cube t0135 A3.svg
Dihedral symmetry [6] [4]

Pentiruncicantellated 6-cube

Pentiruncicantellated 6-cube
Type uniform polypeton
Schläfli symbol t0,2,3,5{4,3,3,3,3}
Coxeter-Dynkin diagrams CDel node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.png
5-faces
4-faces
Cells
Faces
Edges 46080
Vertices 11520
Vertex figure
Coxeter groups BC6, [4,3,3,3,3]
Properties convex

Alternate names

  • Teriprismatorhombi-hexeractihexacontitetrapeton (Acronym: tiprixog) (Jonathan Bowers)[6]

Images

orthographic projections
Coxeter plane B6 B5 B4
Graph 6-cube t0235.svg 6-cube t0235 B5.svg 6-cube t0235 B4.svg
Dihedral symmetry [12] [10] [8]
Coxeter plane B3 B2
Graph 6-cube t0235 B3.svg 6-cube t0235 B2.svg
Dihedral symmetry [6] [4]
Coxeter plane A5 A3
Graph 6-cube t0235 A5.svg 6-cube t0235 A3.svg
Dihedral symmetry [6] [4]

Pentiruncicantitruncated 6-cube

Pentiruncicantitruncated 6-cube
Type uniform polypeton
Schläfli symbol t0,1,2,3,5{4,3,3,3,3}
Coxeter-Dynkin diagrams CDel node 1.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.png
5-faces
4-faces
Cells
Faces
Edges 80640
Vertices 23040
Vertex figure
Coxeter groups BC6, [4,3,3,3,3]
Properties convex

Alternate names

  • Terigreatoprismated hexeract (Acronym: tagpox) (Jonathan Bowers)[7]

Images

orthographic projections
Coxeter plane B6 B5 B4
Graph 6-cube t01235.svg 6-cube t01235 B5.svg 6-cube t01235 B4.svg
Dihedral symmetry [12] [10] [8]
Coxeter plane B3 B2
Graph 6-cube t01235 B3.svg 6-cube t01235 B2.svg
Dihedral symmetry [6] [4]
Coxeter plane A5 A3
Graph 6-cube t01235 A5.svg 6-cube t01235 A3.svg
Dihedral symmetry [6] [4]

Pentisteritruncated 6-cube

Pentisteritruncated 6-cube
Type uniform polypeton
Schläfli symbol t0,1,4,5{4,3,3,3,3}
Coxeter-Dynkin diagrams CDel node 1.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.png
5-faces
4-faces
Cells
Faces
Edges 30720
Vertices 7680
Vertex figure
Coxeter groups BC6, [4,3,3,3,3]
Properties convex

Alternate names

  • Tericellitrunki-hexeractihexacontitetrapeton (Acronym: tactaxog) (Jonathan Bowers)[8]

Images

orthographic projections
Coxeter plane B6 B5 B4
Graph 6-cube t0145.svg 6-cube t0145 B5.svg 6-cube t0145 B4.svg
Dihedral symmetry [12] [10] [8]
Coxeter plane B3 B2
Graph 6-cube t0145 B3.svg 6-cube t0145 B2.svg
Dihedral symmetry [6] [4]
Coxeter plane A5 A3
Graph 6-cube t0145 A5.svg 6-cube t0145 A3.svg
Dihedral symmetry [6] [4]

Pentistericantitruncated 6-cube

Pentistericantitruncated 6-cube
Type uniform polypeton
Schläfli symbol t0,1,2,4,5{4,3,3,3,3}
Coxeter-Dynkin diagrams CDel node 1.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.png
5-faces
4-faces
Cells
Faces
Edges 80640
Vertices 23040
Vertex figure
Coxeter groups BC6, [4,3,3,3,3]
Properties convex

Alternate names

  • Tericelligreatorhombated hexeract (Acronym: tocagrax) (Jonathan Bowers)[9]

Images

orthographic projections
Coxeter plane B6 B5 B4
Graph 6-cube t01245.svg 6-cube t01245 B5.svg 6-cube t01245 B4.svg
Dihedral symmetry [12] [10] [8]
Coxeter plane B3 B2
Graph 6-cube t01245 B3.svg 6-cube t01245 B2.svg
Dihedral symmetry [6] [4]
Coxeter plane A5 A3
Graph 6-cube t01245 A5.svg 6-cube t01245 A3.svg
Dihedral symmetry [6] [4]

Omnitruncated 6-cube

Omnitruncated 6-cube
Type Uniform 6-polytope
Schläfli symbol t0,1,2,3,4,5{35}
Coxeter-Dynkin diagrams CDel node 1.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.png
5-faces
4-faces
Cells
Faces
Edges 138240
Vertices 46080
Vertex figure irregular 5-simplex
Coxeter group BC6, [4,3,3,3,3]
Properties convex, isogonal

The omnitruncated 6-cube has 5040 vertices, 15120 edges, 16800 faces (4200 hexagons and 1260 squares), 8400 cells, 1806 4-faces, and 126 5-faces. With 5040 vertices, it is the largest of 35 uniform 6-polytopes generated from the regular 6-cube.

Alternate names

  • Pentisteriruncicantituncated 6-cube or 6-orthoplex (omnitruncation for 6-polytopes)
  • Omnitruncated hexeract
  • Great teri-hexeractihexacontitetrapeton (Acronym: gotaxog) (Jonathan Bowers)[10]

Images

orthographic projections
Coxeter plane B6 B5 B4
Graph 6-cube t012345.svg 6-cube t012345 B5.svg 6-cube t012345 B4.svg
Dihedral symmetry [12] [10] [8]
Coxeter plane B3 B2
Graph 6-cube t012345 B3.svg 6-cube t012345 B2.svg
Dihedral symmetry [6] [4]
Coxeter plane A5 A3
Graph 6-cube t012345 A5.svg 6-cube t012345 A3.svg
Dihedral symmetry [6] [4]

Related polytopes

These polytopes are from a set of 63 uniform polypeta generated from the B6 Coxeter plane, including the regular 6-cube or 6-orthoplex.

6-cube t5.svg
β6
6-cube t4.svg
t1β6
6-cube t3.svg
t2β6
6-cube t2.svg
t2γ6
6-cube t1.svg
t1γ6
6-cube t0.svg
γ6
6-cube t45.svg
t0,1β6
6-cube t35.svg
t0,2β6
6-cube t34.svg
t1,2β6
6-cube t25.svg
t0,3β6
6-cube t24.svg
t1,3β6
6-cube t23.svg
t2,3γ6
6-cube t15.svg
t0,4β6
6-cube t14.svg
t1,4γ6
6-cube t13.svg
t1,3γ6
6-cube t12.svg
t1,2γ6
6-cube t05.svg
t0,5γ6
6-cube t04.svg
t0,4γ6
6-cube t03.svg
t0,3γ6
6-cube t02.svg
t0,2γ6
6-cube t01.svg
t0,1γ6
6-cube t345.svg
t0,1,2β6
6-cube t245.svg
t0,1,3β6
6-cube t235.svg
t0,2,3β6
6-cube t234.svg
t1,2,3β6
6-cube t145.svg
t0,1,4β6
6-cube t135.svg
t0,2,4β6
6-cube t134.svg
t1,2,4β6
6-cube t125.svg
t0,3,4β6
6-cube t124.svg
t1,2,4γ6
6-cube t123.svg
t1,2,3γ6
6-cube t045.svg
t0,1,5β6
6-cube t035.svg
t0,2,5β6
6-cube t034.svg
t0,3,4γ6
6-cube t025.svg
t0,2,5γ6
6-cube t024.svg
t0,2,4γ6
6-cube t023.svg
t0,2,3γ6
6-cube t015.svg
t0,1,5γ6
6-cube t014.svg
t0,1,4γ6
6-cube t013.svg
t0,1,3γ6
6-cube t012.svg
t0,1,2γ6
6-cube t2345.svg
t0,1,2,3β6
6-cube t1345.svg
t0,1,2,4β6
6-cube t1245.svg
t0,1,3,4β6
6-cube t1235.svg
t0,2,3,4β6
6-cube t1234.svg
t1,2,3,4γ6
6-cube t0345.svg
t0,1,2,5β6
6-cube t0245.svg
t0,1,3,5β6
6-cube t0235.svg
t0,2,3,5γ6
6-cube t0234.svg
t0,2,3,4γ6
6-cube t0145.svg
t0,1,4,5γ6
6-cube t0135.svg
t0,1,3,5γ6
6-cube t0134.svg
t0,1,3,4γ6
6-cube t0125.svg
t0,1,2,5γ6
6-cube t0124.svg
t0,1,2,4γ6
6-cube t0123.svg
t0,1,2,3γ6
6-cube t12345.svg
t0,1,2,3,4β6
6-cube t02345.svg
t0,1,2,3,5β6
6-cube t01345.svg
t0,1,2,4,5β6
6-cube t01245.svg
t0,1,2,4,5γ6
6-cube t01235.svg
t0,1,2,3,5γ6
6-cube t01234.svg
t0,1,2,3,4γ6
6-cube t012345.svg
t0,1,2,3,4,5γ6

Notes

  1. ^ Klitzing, (x4o3o3o3o3x - stoxog)
  2. ^ Klitzing, (x4x3o3o3o3x - tacog)
  3. ^ Klitzing, (x4o3x3o3o3x - topag)
  4. ^ Klitzing, (x4x3x3o3o3x - togrix)
  5. ^ Klitzing, (x4x3o3x3o3x - tocrag)
  6. ^ Klitzing, (x4o3x3x3o3x - tiprixog)
  7. ^ Klitzing, (x4x3x3o3x3x - tagpox)
  8. ^ Klitzing, (x4x3o3o3x3x - tactaxog)
  9. ^ Klitzing, (x4x3x3o3x3x - tocagrax)
  10. ^ Klitzing, (x4x3x3x3x3x - gotaxog)

References

  • H.S.M. Coxeter:
    • H.S.M. Coxeter, Regular Polytopes, 3rd Edition, Dover New York, 1973
    • Kaleidoscopes: Selected Writings of H.S.M. Coxeter, editied by F. Arthur Sherk, Peter McMullen, Anthony C. Thompson, Asia Ivic Weiss, Wiley-Interscience Publication, 1995, ISBN 978-0-471-01003-6 [1]
      • (Paper 22) H.S.M. Coxeter, Regular and Semi Regular Polytopes I, [Math. Zeit. 46 (1940) 380-407, MR 2,10]
      • (Paper 23) H.S.M. Coxeter, Regular and Semi-Regular Polytopes II, [Math. Zeit. 188 (1985) 559-591]
      • (Paper 24) H.S.M. Coxeter, Regular and Semi-Regular Polytopes III, [Math. Zeit. 200 (1988) 3-45]
  • Norman Johnson Uniform Polytopes, Manuscript (1991)
    • N.W. Johnson: The Theory of Uniform Polytopes and Honeycombs, Ph.D.
  • Richard Klitzing, 6D, uniform polytopes (polypeta) x4o3o3o3o3x - stoxog, x4x3o3o3o3x - tacog, x4o3x3o3o3x - topag, x4x3x3o3o3x - togrix, x4x3o3x3o3x - tocrag, x4o3x3x3o3x - tiprixog, x4x3x3o3x3x - tagpox, x4x3o3o3x3x - tactaxog, x4x3x3o3x3x - tocagrax, x4x3x3x3x3x - gotaxog

External links


Wikimedia Foundation. 2010.

Игры ⚽ Нужно решить контрольную?

Look at other dictionaries:

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”