- Omnitruncation
-
In geometry, an omnitruncation is an operation applied to a regular polytope (or honeycomb) in a Wythoff construction that creates a maximum number of facets. It is represented in a Coxeter–Dynkin diagram with all nodes ringed.
It is a shortcut term which has a different meaning in progressively higher dimensional polytopes:
- Uniform polytope#Truncation_operators
- For regular polygons: An ordinary truncation, t0,1{p}={2p}.
- For uniform polyhedra (3-polytopes): A cantitruncation, t0,1,2{p, q}. (Application of both cantellation and truncation operations)
- Coxeter-Dynkin diagram:
- For uniform polychora (4-polytopes): A runcicantitruncation, t0,1,2,3{p, q,r}. (Application of runcination, cantellation, and truncation operations)
- Coxeter-Dynkin diagram: , ,
- For uniform polytera (5-polytopes): A steriruncicantitruncation, t0,1,2,3,4{p, q,r, s}. (Application of sterication, runcination, cantellation, and truncation operations)
- Coxeter-Dynkin diagram: , ,
- For uniform n-polytopes: t0,1,...,n-1{p1,p2,...,pn}.
See also
References
- Coxeter, H.S.M. Regular Polytopes, (3rd edition, 1973), Dover edition, ISBN 0-486-61480-8 (pp.145-154 Chapter 8: Truncation, p 210 Expansion)
- Norman Johnson Uniform Polytopes, Manuscript (1991)
- N.W. Johnson: The Theory of Uniform Polytopes and Honeycombs, Ph.D. Dissertation, University of Toronto, 1966
External links
- Weisstein, Eric W., "Expansion" from MathWorld.
- Olshevsky, George, Truncation at Glossary for Hyperspace.
This geometry-related article is a stub. You can help Wikipedia by expanding it. - Uniform polytope#Truncation_operators