- Lithium
Lithium (pronEng|ˈlɪθiəm) is a
chemical element with the symbol Li andatomic number 3. It is a softalkali metal with a silver-white color. Under standard conditions, it is the lightestmetal and the least densesolid element. Like all alkali metals, lithium is highly reactive, corroding quickly in moistair to form a black tarnish. For this reason, lithium metal is typically stored under the cover ofoil . When cut open, lithium exhibits a metallic lustre, but contact with oxygen quickly returns it back to a dull silvery grey color. Lithium is also highly flammable.According to theory, lithium (mostly 7Li) was one of the few elements synthesized in the
Big Bang , although its quantity has vastly decreased. The reasons for its disappearance and the processes by which new lithium is created continue to be important matters of study inastronomy . Lithium is tied withkrypton as 32nd or 33rd most abundant element in thecosmos (seeCosmochemical Periodic Table of the Elements in the Solar System ), being less common than any element beforeRubidium (element 37) except forscandium ,gallium ,arsenic , andbromine , yet more common than any element beyond krypton (element 36).Due to its high
reactivity it only appears naturally on Earth in the form of compounds. Lithium occurs in a number of pegmatiticmineral s, but is also commonly obtained frombrine s andclay s; on a commercial scale, lithium metal is isolated electrolytically from a mixture oflithium chloride andpotassium chloride .Trace amounts of lithium are present in the
ocean s and in some organisms, though the element serves no apparent biological function in humans. Nevertheless, the neurological effect of the lithium ion Li+ makes some lithium salts useful as a class of mood stabilizing drugs. Lithium and its compounds have several other commercial applications, including heat-resistantglass andceramic s, high strength-to-weightalloy s used inaircraft , and lithium batteries. Lithium also has important links tonuclear physics : the splitting of lithium atoms was the first man-made form of anuclear reaction , andlithium deuteride serves as the fusion fuel in staged thermonuclear weapons.History and etymology
Petalite (lithium aluminium silicate) was first described in 1800 by theBrazil ian (then Portuguese) scientistJosé Bonifácio de Andrade e Silva , who discovered the mineral in a Swedishiron mine on the island of Utö. However, it was not until 1817 thatJohan August Arfwedson , then a trainee in the laboratory ofJöns Jakob Berzelius , discovered the presence of a new element while analyzing petalite ore. The element formed compounds similar to those ofsodium andpotassium , though itscarbonate andhydroxide were less water soluble and had a larger capacity to neutralize acid. Berzelius gave the alkaline material the name "lithos", from the Greek "λιθoς" ("lithos", "stone"), to reflect its discovery in a mineral, as opposed to sodium and potassium which had been discovered inplant tissue; its name would later be standardized as "lithium". Arfwedson later showed that this same element was present in the mineral oresspodumene andlepidolite . In 1818,Christian Gmelin was the first to observe that lithium salts give a bright red color in flame. However, both Arfwedson and Gmelin tried and failed to isolate the element from its salts.cite web |last= Winter |first= Mark J|url=http://www.webelements.com/webelements/elements/text/Li/hist.html |title=Chemistry : Periodic Table: lithium: historical information | accessdate = 2007-08-19| publisher=Web Elements] cite book | year = 2004 | title = Encyclopedia of the Elements: Technical Data - History - Processing - Applications | publisher = Wiley | isbn = 978-3527306664 | pages = 287–300] [cite web | publisher = Elementymology & Elements Multidict | title = Lithium| first = Peter | last =van der Krogt | url = http://www.vanderkrogt.net/elements/elem/li.html| accessdate = 2008-09-18] The element was not isolated until 1821, whenWilliam Thomas Brande performedelectrolysis onlithium oxide , a process which had previously been employed bySir Humphry Davy to isolate potassium and sodium. [cite web | url = http://www.diracdelta.co.uk/science/source/t/i/timeline/source.html | title = Timeline science and engineering | publisher = DiracDelta Science & Engineering Encyclopedia| accessdate = 2008-09-18] Brande also described pure salts of lithium, such as the chloride, and performed an estimate of its atomic weight. In 1855,Robert Bunsen and Augustus Matthiessen produced large quantities of the metal by electrolysis oflithium chloride . Commercial production of lithium metal began in 1923 by the German companyMetallgesellschaft AG through the electrolysis of a molten mixture of lithium chloride andpotassium chloride . [cite web| url = http://www.echeat.com/essay.php?t=29195 | title = Analysis of the Element Lithium | first = Thomas | last = Green | date 2006-06-11| publisher = echeat]Properties
Like other
alkali metal s, lithium has a singlevalence electron which it will readily lose to form acation , indicated by the element's lowelectronegativity . As a result, lithium is easily deformed, highly reactive, and has lower melting andboiling point s than most metals. These and many other properties attributable to alkali metals' weakly held valence electron are most distinguished in lithium, as it possesses the smallestatomic radius and thus the highest electronegativity of the alkali group.In addition, lithium has a
diagonal relationship withmagnesium , an element of similar atomic andionic radius . Chemical resemblances between the two metals include the formation of anitride by reaction with N2, the formation of anoxide when burnt in O2, salts with similar solubilities, and thermal instability of thecarbonate s and nitrides. cite book | first = Conrad W. last = Kamienski, McDonald, Daniel P.; Stark, Marshall W.; Papcun, John R. | chapter =Lithium and lithium compounds | title =Kirk-Othmer Encyclopedia of Chemical Technology | publisher = John Wiley & Sons, Inc.| year = 2004 | doi =10.1002/0471238961.1209200811011309.a01.pub2]Lithium is soft enough to be cut with a knife, though this is more difficult than cutting sodium. The fresh metal has a silvery-white color which only remains untarnished in dry air. Lithium has about half the density of water, giving solid sticks of lithium metal the odd heft of a light-to-medium wood such as
pine . The metal floats highly inhydrocarbon s; in the laboratory, jars of lithium are typically composed of black-coated sticks held down in hydrocarbon mechanically by the jar's lid and other sticks.Lithium is greatly heat-resistant, possessing a low
coefficient of thermal expansion and the highestspecific heat capacity of any solid element. Lithium has also been found to besuperconductive below 400 μK. This finding paves the way for further study of superconductivity, as lithium'satomic lattice .At cryogenic temperatures, lithium, like sodium, undergoes martensitic transformations when cooled below liquid nitrogen temperatures (77 oK). This is a multicrystalline state composed of FCC (Face Centered Cubic), BCC (Body Centered Cubic) and R9 Hex. At liquid helium temperatures (4 oK) 9R Hex is the most prevalent crystal. The proportion of the different crystalline states is temperature-dependent. On cryogenic cooling lithium at atmospheric pressure, the crystalline state which first predominates is FCC, followed by BCC, followed by R9 Hex at the coldest temperatures. On heating solid lithium from deep cryogenic temperatures, the property known as "heat of reversion" will cause a crystalline state transition from R9 Hex to BCC, which absorbs heat and causes cooling. In warming at cryogenic peratures, there is thus a region of negative specific heat in lithium crystals, due to this state change. [REFERENCE see paper by DOUGLAS L. MARTIN circa 1956.]
Chemistry
In moist air, lithium metal rapidly tarnishes to form a black coating of
lithium hydroxide (LiOH and LiOH·H2O),lithium nitride (Li3N) andlithium carbonate (Li2CO3, the result of a secondary reaction between LiOH and CO2).When placed over a flame, lithium gives off a striking
crimson color, but when it burns strongly, the flame becomes a brilliant white. Lithium will ignite and burn in oxygen when exposed to water or water vapours. It is the only metal that reacts with nitrogen at room temperature.Lithium metal is flammable and potentially explosive when exposed to air and especially water, though it is far less dangerous than other alkali metals in this regard. The lithium-water reaction at normal temperatures is brisk but not violent. Lithium fires are difficult to extinguish, requiring special chemicals designed to smother them (see
sodium for details).Isotopes
Naturally occurring lithium is composed of two stable
isotope s 6Li and 7Li, the latter being the more abundant (92.5%natural abundance ). [cite web |url=http://ie.lbl.gov/education/parent/Li_iso.htm |title=Isotopes of Lithium|accessdate=2008-04-21 |author= |date= |work= |publisher=Berkley Lab, The Isotopes Project] Sevenradioisotope s have been characterized, the most stable being 8Li with ahalf-life of 838 ms and 9Li with a half-life of 178.3 ms. All of the remainingradioactive isotopes have half-lives that are shorter than 8.6 ms. The shortest-lived isotope of lithium is 4Li which decays throughproton emission and has a half-life of 7.58043x10-23 s.7Li is one of the
primordial elements or, more properly, primordial isotopes, produced inBig Bang nucleosynthesis (a small amount of 6Li is also produced in stars). [cite web |url=http://www.journals.uchicago.edu/doi/abs/10.1086/503538 |title=Lithium Isotopic Abundances in Metal-poor Halo Stars |accessdate=2008-04-21 |author= |date=June 10, 2006 |work= |publisher=The Astrophysical Journal] Lithium isotopes fractionate substantially during a wide variety of natural processes, including mineral formation (chemical precipitation),metabolism , andion exchange . Lithium ion substitutes formagnesium andiron in octahedral sites inclay minerals, where 6Li is preferred to 7Li, resulting in enrichment of the light isotope in processes of hyperfiltration and rock alteration. The exotic 11Li is known to exhibit anuclear halo .Natural occurrence
Lithium is widely distributed on Earth,cite book | last = Krebs | first = Robert E. | year = 2006 | title = The History and Use of Our Earth's Chemical Elements: A Reference Guide | publisher = Greenwood Press | location = Westport, Conn. | isbn = 0-313-33438-2 | pages = 47–50 ] however, it does not naturally occur in elemental form due to its high reactivity. Estimates for crustal content range from 20 to 70 ppm by weight. In keeping with its name, lithium forms a minor part of
igneous rocks, with the largest concentrations ingranite s. Graniticpegmatite s also provide the greatest abundance of lithium-containing minerals, withspodumene andpetalite being the most commercially-viable mineral sources for the element.According to the "Handbook of Lithium and Natural Calcium", "Lithium is a comparatively rare element, although it is found in many rocks and some brines, but always in very low concentrations. There are a fairly large number of both lithium mineral and brine deposits but only comparatively a few of them are of actual or potential commercial value. Many are very small, others are too low in grade." ["Handbook of Lithium and Natural Calcium",
Donald Garrett ,Academic Press , 2004, cited in " [http://www.meridian-int-res.com/Projects/Lithium_Microscope.pdf The Trouble with Lithium 2] "]Applications
Because of its
specific heat capacity, the highest of allsolid s, lithium is often used in heat transfer applications.It is an important ingredient in anode materials, used in rechargeable and primary batteries because of its high
electrochemical potential , light weight, and high current density.Large quantities of lithium are also used in the manufacture of
organolithium reagent s, especially "n"-butyllithium which has many uses in fine chemical andpolymer synthesis.Medical use
Lithium salts were used during the 19th century to treat
gout . Lithium salts such aslithium carbonate (Li2CO3),lithium citrate , andlithium orotate are mood stabilizers. They are used in the treatment ofbipolar disorder , since unlike most other mood altering drugs, they counteract bothmania and depression. Lithium can also be used to augment otherantidepressant drugs. It is also sometimes prescribed as a preventive treatment formigraine disease andcluster headache s.Fact|date=September 2008The active principle in these salts is the lithium ion Li+, which having a smaller diameter, can easily displace K+ and Na+ and even Ca2+, in spite of its greater charge, occupying their sites in several critical neuronal enzymes and neurotransmitter receptors. Although Li+ cannot displace Mg2+ and Zn2+, because of these ions' small size and greater charge (higher charge density, hence stronger bonding), when Mg2+ or Zn2+ are present in low concentrations, and Li+ is present in high concentrations, the latter can occupy sites normally occupied by Mg2+ or Zn2+ in various enzymes. Therapeutically useful amounts of lithium (~ 0.6 to 1.2 mmol/l) are only slightly lower than toxic amounts (>1.5 mmol/l), so the blood levels of lithium must be carefully monitored during treatment to avoid toxicity.
Common side effects of lithium treatment include muscle
tremor s, twitching,ataxia ,hyperparathyroidism , bone loss,hypercalcemia ,hypertension , etc.), kidney damage,nephrogenic diabetes insipidus (polyuria and polydipsia) andseizure s. Many of the side-effects are a result caused by the increased elimination of potassium.Pregnancy - teratogenic properties: Ebstein (cardiac) Anomaly - There appears to be an increased risk of this abnormality in infants of women taking lithium during the first trimester of pregnancy
Other uses
*
Lithium batteries aredisposable (primary) batteries that have lithium metal or lithium compounds as ananode . Lithium batteries are not to be confused with lithium-ion batteries which are high energy-density rechargeable batteries
*Lithium chloride andlithium bromide are extremelyhygroscopic and frequently used asdesiccant s.
* Lithium stearate is a common all-purpose high-temperaturelubricant .
* Lithium is analloy ing agent used to synthesizeorganic compound s.
* Lithium is used as a flux to promote the fusing of metals duringwelding andsoldering . It also eliminates the forming of oxides during welding by absorbing impurities. This fusing quality is also important as a flux for producingceramic s, enamels, andglass .
* Lithium is sometimes used in glasses and ceramics including the glass for the 200-inch (5.08 m)telescope atMt. Palomar .
*Alloy s of the metal withaluminium ,cadmium ,copper andmanganese are used to make high performanceaircraft parts.
* Lithium-aluminium alloys are used inaerospace applications, such as the external tank of theSpace Shuttle , and is planned for the Orion spacecraft.
*Lithium niobate is used extensively in telecommunication products, such asmobile phone s andoptical modulator s, for such components as resonant crystals. Lithium products are currently used in more than 60 percent of mobile phones. [cite news |author=Spring, Martin |title=Two ways to play the lithium boom |url=http://www.moneyweek.com/file/32991/two-ways-to-play-the-lithium-boom.html |publisher=MoneyWeek |date=2007-01-08 |accessdate=2007-08-19]
* The high non-linearity of lithium niobate also makes a good choice for non-linear optics applications.
*Lithium deuteride was the fusion fuel of choice in early versions of the hydrogen bomb. When bombarded byneutron s, both 6Li and 7Li producetritium —this reaction, which was not fully understood when hydrogen bombs were first tested, was responsible for the runaway yield of theCastle Bravo nuclear test. Tritium fuses withdeuterium in a fusion reaction that is relatively easy to achieve. Although details remain secret, lithium-6 deuteride still apparently plays a role in modernnuclear weapons , as a fusion material.
* Metallic lithium and its complexhydride s such as e.g. Li [AlH4] are considered as high energy additives torocket propellant s [3] .
*Lithium peroxide ,lithium nitrate , lithium chlorate andlithium perchlorate are used and thought of as oxidizers in both rocket propellants andoxygen candle s to supply submarines and space capsules with oxygen. [cite journal | author = K. Ernst-Christian | title = Special Materials in Pyrotechnics: III. Application of Lithium and its Compounds in Energetic Systems | year = 2004 | journal =Propellants, Explosives, Pyrotechnics | volume = 29 | issue = 2 | pages = 67–80 | doi = 10.1002/prep.200400032]
* Lithium fluoride (highly enriched in the common isotope lithium-7) forms the basic constituent of the preferred fluoride salt mixture (LiF-BeF2) used in liquid-fluoride nuclear reactors. Lithium fluoride is exceptionally chemically stable and LiF/BeF2 mixtures have low melting points and the best neutronic properties of fluoride salt combinations appropriate for reactor use.
* Lithium will be used to produce tritium in magnetically confined nuclear fusion reactors using deuterium and tritium as the fuel. Tritium does not occur naturally and will be produced by surrounding the reacting plasma with a 'blanket' containing lithium where neutrons from the deuterium-tritium reaction in the plasma will react with the lithium to produce more tritium. 6Li + n → 4He + 3H. Various means of doing this will be tested at theITER reactor being built at Cadarache, France.
* Lithium is used as a source foralpha particle s, orhelium nuclei. When 7Li is bombarded by acceleratedproton s, 8Be is formed, which undergoes spontaneous fission to form two alpha particles. This was the first man-madenuclear reaction , produced by Cockroft and Walton in 1929.
*Lithium hydroxide (LiOH) is an important compound of lithium obtained from lithium carbonate (Li2CO3). It is a strong base, and when heated with a fat, it produces a lithium soap. Lithium soap has the ability to thicken oils and so is used commercially to manufacture lubricating greases.
* It is also an efficient and lightweight purifier of air. In confined areas, such as aboardspacecraft andsubmarine s, the concentration of carbon dioxide can approach unhealthy or toxic levels. Lithium hydroxide absorbs the carbon dioxide from the air by reacting with it to form lithium carbonate. Any alkali hydroxide will absorb CO2, but lithium hydroxide is preferred, especially in spacecraft applications, because of the low formula weight conferred by the lithium. Even better materials for this purpose include lithium peroxide (Li2O2) that, in presence of moisture, not only absorb carbon dioxide to form lithium carbonate, but also release oxygen. E.g. 2 Li2O2 + 2 CO2 → 2 Li2CO3 + O2.
* Lithium metal is used as areducing agent in some types ofmethamphetamine production, particularly in illegal amateur “meth labs.”
* Lithium can be used to make red fireworksProduction
Since the end of
World War II , lithium metal production has greatly increased. The metal is separated from other elements in igneous mineral such as those above, and is also extracted from the water ofmineral springs .There are wide-spread hopes of using
lithium ion batteries inelectric vehicles , but one study concluded that "realistically achievable lithium carbonate production will be sufficient for only a small fraction of futurePHEV and EV global market requirements", that "demand from the portable electronics sector will absorb much of the planned production increases in the next decade", and that "mass production of lithium carbonate is not environmentally sound, it will cause irreparable ecological damage to ecosystems that should be protected and thatLiIon propulsion is incompatible with the notion of the 'Green Car'".The metal is produced electrolytically from a mixture of fused lithium and
potassium chloride . In 1998 it was about US$ 43 per pound ($95 per kg).cite web |url=http://minerals.usgs.gov/minerals/pubs/commodity/lithium/450798.pdf |title=Lithium | accessdate = 2007-08-19|last=Ober |first=Joyce A |format=pdf |pages = 77-78| publisher=United States Geological Survey ]Chile is currently the leading lithium metal producer in the world, withArgentina next. Both countries recover the lithium from brine pools. In theUnited States lithium is similarly recovered from brine pools inNevada .cite web |url=http://periodic.lanl.gov/elements/3.html |title=Lithium | accessdate = 2007-08-19|date= December 15, 2003|publisher=Los Alamos National Laboratory ]China may emerge as a significant producer of brine-based lithium carbonate around 2010. Potential capacity of up to 55,000 tonnes per year could come on-stream if projects in Qinghai province and Tibet proceed.cite web|url=http://www.meridian-int-res.com/Projects/Lithium_Microscope.pdf |title=The Trouble With Lithium 2 |accessdate = 2008-07-07 |date=May 28, 2008|publisher=
Meridian International Research ]The total amount of lithium recoverable from global reserves has been estimated at 35 million tonnes, which includes 15 million tonnes of the known global lithium reserve base.cite web|url=http://www.meridian-int-res.com/Projects/Lithium_Problem_2.pdf |title=The Trouble with Lithium | accessdate = 2008-07-07|date=January 2007|publisher=
Meridian International Research ]In 1976 a National Research Council Panel estimated lithium resources at 10.6 million tonnes for the Western World. [Evans, R.K. (1978) "Lithium Reserves and Resources" Energy, Vol 3 No.3] The inclusion of Russian and Chinese resources as well as new discoveries in Australia, Serbia, Argentina and the United States, the total has nearly tripled by 2008. [Evans, R.K. (2008) "An Abundance of Lithium" http://www.worldlithium.com/Abstract.html ] [Evans, R.K. (2008) "An Abundance of Lithium Part 2" http://www.worldlithium.com/AN_ABUNDANCE_OF_LITHIUM_-_Part_2.html]
Precautions
Lithium metal, due to its alkaline tarnish, is corrosive and requires special handling to avoid skin contact. Breathing lithium dust or lithium compounds (which are often alkaline) can irritate the nose and throat; higher exposure to lithium can cause a build-up of fluid in the lungs, leading to
pulmonary edema . The metal itself is usually a handling hazard because of the caustic hydroxide produced when it is in contact with moisture. Lithium should be stored in a non-reactive compound such asnaphtha or a hydrocarbon.Facts|date=February 2008Regulation
Some jurisdictions limit the sale of lithium batteries, which are the most readily available source of lithium metal for ordinary consumers. Lithium can be used to reduce
pseudoephedrine and ephedrine tomethamphetamine in theBirch reduction method, which employs solutions of alkali metals dissolved in anhydrous ammonia. However, the effectiveness of such restrictions in controlling illegal production of methamphetamine remains indeterminate and controversial.Facts|date=February 2008Carriage and shipment of some kinds of lithium batteries may be prohibited aboard certain types of transportation (particularly aircraft), because of the ability of most types of lithium batteries to fully discharge very rapidly when short-circuited, leading to overheating and possible
explosion . However, most consumer lithium batteries have thermal overload protection built-in to prevent this type of incident, or their design inherently limits short-circuit currents.Facts|date=February 2008ee also
*
*Dilithium References
External links
* [http://minerals.usgs.gov/minerals/pubs/commodity/lithium/ USGS: Lithium Statistics and Information]
* [http://www.webelements.com/lithium/ WebElements.com – Lithium]
* [http://education.jlab.org/itselemental/ele003.html It's Elemental – Lithium]
* [http://www.bipolar-lives.com/lithium.html Information on Lithium and Bipolar Disorder]
* [http://www.mcis.soton.ac.uk/Site_Files/pdf/nuclear_history/Working_Paper_No_5.pdf University of Southampton, Mountbatten Centre for International Studies, Nuclear History Working Paper No5.]
Wikimedia Foundation. 2010.