- Motor soft starter
-
A motor soft starter is a device used with AC electric motors to temporarily reduce the load and torque in the powertrain of the motor during startup. This reduces the mechanical stress on the motor and shaft, as well as the electrodynamic stresses on the attached power cables and electrical distribution network, extending the lifespan of the system.[2]
Motor soft starters can consist of mechanical or electrical devices, or a combination of both. Mechanical soft starters include clutches and several types of couplings using a fluid, magnetic forces, or steel shot to transmit torque, similar to other forms of torque limiter. Electrical soft starters can be any control system that reduces the torque by temporarily reducing the voltage or current input, or a device that temporarily alters how the motor is connected in the electric circuit.
Electrical soft starters can use solid state devices to control the current flow and therefore the voltage applied to the motor. They can be connected in series with the line voltage applied to the motor, or can be connected inside the delta (Δ) loop of a delta-connected motor, controlling the voltage applied to each winding. Solid state soft starters can control one or more phases of the voltage applied to the induction motor with the best results achieved by three-phase control. Typically, the voltage is controlled by reverse-parallel-connected silicon-controlled rectifiers (thyristors), but in some circumstances with three-phase control, the control elements can be a reverse-parallel-connected SCR and diode.
Another way to limit motor starting current is a series reactor. If an air core is used for the series reactor then a very efficient and reliable soft starter can be designed which is suitable for all type of 3 phase induction motor [ synchronous / asynchronous ] ranging from 25 KW 415 V to 30 MW 11 KV. Using an air core series reactor soft starter is very common practice for applications like pump, compressor, fan etc. Usually high starting torque applications do not use this method.
Contents
Applications
Soft starters can be set up to the requirements of the individual application. In pump applications, a soft start can avoid pressure surges. Conveyor belt systems can be smoothly started, avoiding jerk and stress on drive components. Fans or other systems with belt drives can be started slowly to avoid belt slipping. In all systems, a soft start limits the inrush current and so improves stability of the power supply and reduces transient voltage drops that may affect other loads. [3][4][5]
Motor and machine
Across-the line starting of induction motors is accompanied by inrush currents up to 7 times higher than running current, and starting torque up to 3 times higher than running torque. The increased torque results in sudden mechanical stress on the machine which leads to a reduced service life. Moreover, the high inrush current stresses the power supply, which may lead to voltage dips. As a result, the operability of sensitive consumers may be impaired.[2]
Motor start-up
A soft start-up eliminates the undesired side effects. Several types based on control of the supply voltage or mechanical devices such as slip clutches were developed. The list provides an overview of the various electric start-up types. The current and torque characteristic curves show the behavior of the respective starter solution.
Direct on-line starting
- Three-phase motor with low to medium power rating
- 3 conductors to the motor
- High starting torque
- High current peak
- Voltage dip
- One simple switching device
Star-delta start-up
- Three-phase motor with low to high power rating
- Six conductors to the motor
- Reduced starting torque, 1/3 of the nominal torque
- High mains load due to current peak during switchover from Y to D
- High mechanical stress due to torque surge during switchover from Y to D
- Two or three switching devices, more maintenance
Soft start-up
- Three-phase motor with low to high power rating
- 3 conductors to the motor
- Variable starting torque
- No current peak
- No torque peaks
- Negligible voltage dip
- One simple switching device
- Optional: Guided soft stop, protective functions, etc.
- Zero maintenance
- Compared to contactor solutions, soft starters, sometimes also referred to as soft starting devices, offer considerable advantages.
Torque surges entail high mechanical stress on the machine, which results in higher service costs and increased wear. High currents and current peaks lead to high fixed costs charged by the power supply companies (peak current calculation) and to increased mains and generator loads.
A soft starter continuously controls the three-phase motor’s voltage supply during the start-up phase. This way, the motor is adjusted to the machine’s load behavior. Mechanical operating equipment is accelerated in a gentle manner. Service life, operating behavior and work flows are positively influenced.
See also
- Braking chopper
- Space Vector Modulation
- Variable speed air compressor
- Vector control (motor)
- Korndorfer starter
- Motor controller
- Adjustable-speed drive
- Electronic speed control
- Variable-frequency drive
- Thyristor drive
- DC motor starter section of Electric motor
References
- ^ KIMO Soft starters
- ^ a b Siskind, Charles S. (1963). Electrical Control Systems in Industry. New York: McGraw-Hill, Inc.. p. 150. ISBN 0070577463.
- ^ Bartos, Frank J. (2004-09-01). "AC Drives Stay Vital for the 21st Century". Control Engineering (Reed Business Information). http://www.controleng.com/article/CA450388.html. Retrieved 2008-03-28.[dead link]
- ^ Eisenbrown, Robert E. (2008-05-18). "AC Drives, Historical and Future Perspective of Innovation and Growth". Keynote Presentation for the 25th Anniversary of The Wisconsin Electric Machines and Power Electronics Consortium (WEMPEC). University of Wisconsin, Madison, WI, USA: WEMPEC. pp. 6–10. http://www.wempec.wisc.edu/keynotes.htm. Retrieved 2008-03-28.
- ^ Jahn, Thomas M.; Owen, Edward L. (January 2001). "AC Adjustable-Speed Drives at the Millennium: How Did We Get Here?". IEEE Transactions on Power Electronics (IEEE) 16 (1): 17–25. doi:10.1109/63.903985.
Categories:- Automation
- Electric motors
- Electromagnetic components
- Electric power systems components
- Power electronics
Wikimedia Foundation. 2010.