- Electricity distribution
Electricity distribution is the penultimate stage in the delivery (before retail) of
electricity to end users. It is generally considered to include medium-voltage (less than 50 kV) power lines,electrical substation s and pole-mountedtransformer s, low-voltage (less than 1000 V) distribution wiring and sometimeselectricity meter s.History
In the early days of electricity distribution, direct current DC generators were connected to loads at the same voltage. The generation, transmission and loads had to be of the same voltage because there was no way of changing DC voltage levels, other than inefficient motor-generator sets. Low DC voltages were used (on the order of 100 volts) since that was a practical voltage for incandescent lamps, which were then the primary electrical load. The low voltage also required less insulation to be safely distributed within buildings.
The losses in a cable are proportional to the square of the current, the length of the cable, and the resistivity of the material, and are inversely proportional to cross-sectional area. Early transmission networks were already using copper, which is one of the best economically feasible conductors for this application. To reduce the current and copper required for a given quantity of power transmitted would require a higher transmission voltage, but no convenient efficient method existed to change the voltage level of DC power circuits. To keep losses to an economically practical level the Edison DC system needed thick cables and local generators. Early DC generating plants needed to be within about convert|1.5|mi|km of the farthest customer to avoid the need for excessively large and expensive conductors.
Introduction of alternating current
The adoption of
alternating current (AC) forelectricity generation following theWar of Currents dramatically changed the situation. Powertransformer s, installed atpower stations , could be used to raise the voltage from the generators, and transformers at local substations reduced it to supply loads. Increasing the voltage reduced the current in the transmission and distribution lines and hence the size of conductors required and distribution losses incurred. This made it more economical to distribute power over long distances. Generators (such ashydroelectric sites) could be located far from the loads.In North America, early distribution systems used a voltage of 2200 volts corner-grounded delta. Over time, this was gradually increased to 2400 volts. As cities grew, most 2400 volt systems were upgraded to 2400/4160 volt, three-phase systems. In three phase networks that permit connections between phase and neutral, both the phase-to-phase voltage (4160, in this example) and the phase-to-neutral voltage are given; if only one value is shown, the network does not serve single-phase loads connected phase-to-neutral. Some city and suburban distribution systems continue to use this range of voltages, but most have been converted to 7200/12470Y, 7620/13200Y, 14400/24940Y, and 19920/34500Y.
European systems used 3300 volts to ground, in support of the 220/380Y volt power systems used in those countries. In the UK, urban systems progressed to 6.6 kV and then 11 kV (phase to phase), the most common distribution voltage.
North American and European power distribution systems also differ in that North American systems tend to have a greater number of low-voltage, step-down transformers located close to customers' premises. For example, in the US a pole-mounted transformer in a suburban setting may supply 1-3 houses, whereas in the UK a typical urban or suburban low-voltage substation would normally be rated between 315kVA and 1000kVA (1MVA) and supply a whole neighbourhood. This is because the higher voltage used in Europe (415V vs 230V) may be carried over a greater distance with acceptable power loss. An advantage of the North American setup is that failure or maintenance on a single transformer will only affect a few customers. Advantages of the UK setup are that the transformers may be fewer, larger and more efficient, and due to diversity there need be less spare capacity in the transformers, reducing power wastage. In North American city areas with many customers per unit area, network distribution will be used, with multiple transformers and low-voltage busses interconnected over several city blocks.
Rural Electrification systems, in contrast to urban systems, tend to use higher voltages because of the longer distances covered by those distribution lines (seeRural Electrification Administration ). 7200, 12470, 25000, and 34500 volt distribution is common in the United States; 11 kV and 33 kV are common in the UK, New Zealand and Australia; 11 kV and 22 kV are common in South Africa. Other voltages are occasionally used.In
New Zealand ,Australia , Saskatchewan, Canada, andSouth Africa ,single wire earth return systems (SWER) are used to electrify remote rural areas.While power electronics now allow for conversion between DC voltage levels, AC is still used in distribution due to the economy, efficiency and reliability of transformers. High-voltage DC is used for transmission of large blocks of power over long distances, or for interconnecting adjacent AC networks, but not for distribution to customers.
Distribution network configurations
Distribution networks are typically of two types, radial or interconnected (see
Spot Network Substation s). A radial network leaves the station and passes through the network area with no normal connection to any other supply. This is typical of long rural lines with isolated load areas. An interconnected network is generally found in more urban areas and will have multiple connections to other points of supply.These points of connection are normally open but allow various configurations by the operating utility by closing and opening switches. Operation of these switches may be by remote control from a control centre or by a lineman. The benefit of the interconnected model is that in the event of a
fault or required maintenance a small area of network can be isolated and the remainder kept on supply.Within these networks there may be a mix of overhead line construction utilizing traditional
utility pole s and wires and, increasingly, underground construction with cables and indoor or cabinet substations. However, underground distribution is significantly more expensive than overhead construction. In part to reduce this cost, underground power lines are sometimes co-located with other utility lines in what are calledCommon utility duct s. Distribution feeders emanating from a substation are generally controlled by acircuit breaker which will open when a fault is detected. Automatic Circuit Reclosers may be installed to further segregate the feeder thus minimizing the impact of faults.Long feeders experience
voltage drop requiring capacitors or voltage regulators to be installed.Characteristics of the supply given to customers are generally mandated by
contract between the supplier and customer. Variables of the supply include:
* AC or DC - Virtually all public electricity supplies are AC today. Users of large amounts of DC power such as some electric railways,telephone exchange s and industrial processes such asaluminium smelting usually either operate their own or have adjacent dedicated generating equipment, or use rectifiers to derive DC from the public AC supply
*Voltage , including tolerance (usually +10 or -15percentage )
* Frequency, commonly 50 & 60 Hz, 16-2/3 Hz for some railways and, in a few older industrial and mining locations, 25 Hz. [ 400 Hz used for select aircraft, computer, and military equipment is never used for extended distribution systems (more than a few hundred meters). ]
* Phase configuration (single phase , polyphase includingtwo phase andthree phase )
* Maximum demand (usually measured as the largest amount of power delivered within a 15 or 30 minute period during a billing period)
* Load Factor, expressed as a ratio of average load to peak load over a period of time. Load factor indicates the degree of effective utilization of equipment (and capital investment) of distribution line or system.
*Power factor of connected load
* Earthing arrangements - TT, TN-S, TN-C-S or TN-C
*Maximum prospective short circuit current
* Maximum level and frequency of occurrence of transientsSee
List of countries with mains power plugs, voltages and frequencies .Modern distribution systems
The modern distribution system begins as the primary circuit leaves the sub-station and ends as the secondary service enters the customer's meter socket. A variety of methods, materials, and equipment are used among the various utility companies, but the end result is similar. First, the energy leaves the sub-station in a primary circuit, usually with all three phases.
The most common type of primary is known as a wye configuration (so named because of the shape of a "Y".) The wye configuration includes 3 phases (represented by the three outer parts of the "Y") and a neutral (represented by the center of the "Y".) The neutral is grounded both at the substation and at every power pole. In a typical 12470Y/7200 volt system, the pole mount transformer's primary winding is rated for 7200 volts and is connected across one phase of power and the neutral. The primary and secondary (low voltage) neutrals are bonded (connected) together to provide a path to blow the primary fuse if any fault occurs that allows primary voltage to enter the secondary lines. An example of this type of fault would be a primary phase falling across the secondary lines. Another example would be some type of fault in the transformer itself.
The other type of primary configuration is known as delta. This method is older and less common. Delta is so named because of the shape of the Greek letter delta, a triangle. Delta has only 3 phases and no neutral. In delta there is only a single voltage, between two phases (phase to phase), while in wye there are two voltages, between two phases and between a phase and neutral (phase to neutral). Wye primary is safer because if one phase becomes grounded, that is, makes connection to the ground through a person, tree, or other object, it should trip out the fused cutout similar to a household circuit breaker tripping. In delta, if a phase makes connection to ground it will continue to function normally. It takes two or three phases to make connection to ground before the fused cutouts will open the circuit. The voltage for this configuration is usually 4800 volts. Transformers are sometimes used to step down from 7200 or 7600 volts to 4800 volts or to step up from 4800 volts to 7200 or 7600 volts. When the voltage is stepped up, a neutral is created by bonding one leg of the 7200/7600 side to ground. This is commonly used to power single phase underground services or whole housing developments that are built in 4800 volt delta distribution areas. Step downs are used in areas that have been upgraded to a 7200/12500Y or 7600/13200Y and the power company chooses to leave a section as a 4800 volt setup. Sometimes power companies choose to leave sections of a distribution grid as 4800 volts because this setup is less likely to trip fuses or reclosers in heavily wooded areas where trees come into contact with lines.
Economic and political
Traditionally the electricity industry has been a publicly owned institution but starting in the 1970s nations began the process of
deregulation andprivatisation , leading toelectricity market s. A major focus of these was the elimination of the former so called "natural monopoly " of generation, transmission, and distribution. As a consequence, electricity has become more of a commodity. The separation has also led to the development of new terminology to describe the business units, "e.g."line company ,wires business andnetwork company .ee also
* Blackout
*GENI
*Busbar
*Common utility duct
* Cutout
*Electrical utility
*Distributed generation
*Electrical wiring
*Electricity generation
*Electricity transmission
*Electricity retailing
*Future energy development
*
* Lineman
*Load Profile
*Net metering
*Power cable
*Power quality
*Virtual power plant
*Voltage drop
*Mains Distribution Unit References
* [http://www.saskpower.com/pm/rural_elect/rural_elect2.shtml Saskpower single-wire ground return electrification in 1949]
External links
* [http://www.ieee.org/pes IEEE Power Engineering Society]
* [http://grouper.ieee.org/groups/td/dist/ IEEE Power Engineering Society Distribution Subcommittee]
* [http://www.oe.energy.gov/randd/electric_distribution.htm U.S. Department of Energy Electric Distribution website]
* [http://www.iuota.org Inter-Utility Overhead Training Association]
* [http://www.iustaonline.com Inter-Utility Substation Training Association]
* [http://www.eaton.com/EatonCom/Markets/Electrical/Learning/LearningontheGo/101BasicsSeries/index.htm Electrical Basics Courses]Further reading
* Brown, R. E., "Electric Power Distribution Reliability," Marcel Dekker, Inc., 2002.
* Burke, J., "Power Distribution Engineering," Marcel Dekker, Inc., 1994.
* Hoffman, P., Scheer, R., Marchionini, B., "Distributed Energy Resources: A Key Element of Grid Modernization" DE - March/April 2004 [http://www.forester.net/de_0403_distributed.html]
* Short, T. A. "Electric Power Distribution Handbook," CRC Press, 2004.
* Westinghouse Electric Corporation, "Distribution Systems," vol. 3, 1965.
* Westinghouse Electric Corporation, "Electric power transmission patents; Tesla polyphase system". (Transmission of power; polyphase system;Tesla patents )
* Willis, H. L., "Power Distribution Planning Reference Book," Marcel Dekker, Inc., 2nd ed., 2004.
Wikimedia Foundation. 2010.