- Total variation
-
In mathematics, the total variation identifies several slightly different concepts, related to the (local or global) structure of the codomain of a function or a measure. For a real-valued continuous function f, defined on an interval [a, b] ⊂ ℝ, its total variation on the interval of definition is a measure of the one-dimensional arclength of the curve with parametric equation x → f(x), for x ∈ [a,b].
Contents
Historical notice
The concept of total variation for functions of one real variable was first introduced by Camille Jordan in the paper (Jordan 1881).[1] He used the new concept in order to prove a convergence theorem for Fourier series of discontinuous periodic functions whose variation is bounded. The extension of the concept to functions of more than one variable however is not simple for some reasons.
Definitions
Total variation for functions of one real variable
real-valued (or more generally complex-valued) function f, defined on an interval [a,b]⊂ℝ is the quantity
The total variation of awhere the supremum runs over the set of all partitions of the given interval.
Total variation for functions of n>1 real variables
Ω be an open subset of ℝn. Given a function f belonging to L1(Ω), the total variation of f in is defined as
Letwhere is the set of continuously differentiable vector functions of compact support contained in Ω, and is the essential supremum norm. Note that this definition does not require that the domain Ω⊆ℝn of the given function is a bounded set.
Total variation in measure theory
Following Saks (1937, p. 10), consider a signed measure μ on a measurable space (X,Σ): then it is possible to define two set functions and , respectively called upper variation and lower variation, as follows
clearly
μ is the set function
The variation (also called absolute variation) of the signed measureand its total variation is defined as the value of this measure on the whole space of definition, i.e.
Saks (1937, p. 11) uses upper and lower variations to prove the Hahn–Jordan decomposition: according to his version of this theorem, the upper and lower variation are respectively a non-negative and a non-positive measure. Using a more modern notation, define
Then μ + and μ − are two non-negative measures such that
The last measure is sometimes called, by abuse of notation, total variation measure.
If the measure μ is complex-valued i.e. is a complex measure, its upper and lower variation cannot be defined and the Hahn–Jordan decomposition theorem can only be applied to its real and imaginary parts. However, it is possible to follow Rudin (1966, pp. 137–139) and define the total variation of the complex-valued measure μ as follows
μ is the set function
The variation of the complex-valued measurewhere the supremum is taken over all partitions π of a measurable set E into a finite number of disjoint measurable subsets.
The variation so defined is a positive measure (see Rudin (1966, p. 139)) and coincides with the one defined by 1.3 when μ is a signed measure: its total variation is defined as above. This definition works also if μ is a vector measure: the variation is then defined by the following formula
where the supremum is as above. Note also that this definition is slightly more general than the one given by Rudin (1966, p. 138) since it requires only to consider finite partitions of the space X: this implies that it can be used also to define the total variation on finitely-additive measures.
Total variation of probability measures
Main article: Total variation distance of probability measuresThe total variation of any probability measure is exactly one, therefore it is not interesting as a means of investigating the properties of such measures. However, when μ and ν are probability measure, the total variation distance of probability measures can be defined as
and its values are non-trivial. Informally, this is the largest possible difference between the probabilities that the two probability distributions can assign to the same event. For a categorical distribution it is possible to write the total variation distance as follows
The total variational distance for categorical probability distributions is called statistical distance: sometimes, in the definition of this distance, the factor is omitted.
Basic properties
Total variation of differentiable functions
The total variation of a differentiable function f can be expressed as an integral involving the given function instead of as the supremum of the functionals of definitions 1.1 and 1.2.
The form of the total variation of a differentiable functions of one variable
differentiable function f, defined on an interval [a,b]⊂ℝ, has the following expression
The total variation of aThe form of the total variation of a differentiable functions of several variables
differentiable function f defined on a bounded open set Ω⊆ℝn, the total variation of f has the following expression
Given aProof
The first step in the proof is to first prove an equality which follows from the Gauss-Ostrogradsky theorem.
Lemma
Under the conditions of the theorem, the following equality holds:
Proof of the lemma
From the Gauss-Ostrogradsky theorem:
by subtituting , we have:
where is zero on the border of Ω by definition:
Proof of the equality
Under the conditions of the theorem, from the lemma we have:
in the last part could be omitted, because by definition it's considerate supremum is at most one.
On the other hand we consider and which is the up to ε approximation of θ in with the same integral. We can do this hence is dense in L1. Now again substituting into the lemma:
This means we[who?] have a convergent sequence of that tends to as well as we know that . q.e.d.
It can be seen from the proof that the supremum is attained when
The function f is said to be of bounded variation precisely if its total variation is finite.
Total variation of a measure
The total variation is a norm defined on the space of measures of bounded variation. The space of measures on a σ-algebra of sets is a Banach space, called the ca space, relative to this norm. It is contained in the larger Banach space, called the ba space, consisting of finitely additive (as opposed to countably additive) measures, also with the same norm. The distance function associated to the norm gives rise to the total variation distance between two measures μ and ν.
For finite measures on ℝ, the link between the total variation of a measure μ and the total variation of a function, as described above, goes as follows. Given μ, define a function by
Then, the total variation of the signed measure μ is equal to the total variation, in the above sense, of the function φ. In general, the total variation of a signed measure can be defined using Jordan's decomposition theorem by
for any signed measure μ on a measurable space (X,Σ).
Applications
Total variation can be seen as a non-negative real-valued functional defined on the space of real-valued functions (for the case of functions of one variable) or on the space of integrable functions (for the case of functions of several variables). As a functional, total variation finds applications in several branches of mathematics and engineering, like optimal control, numerical analysis, and calculus of variations, where the solution to a certain problem has to minimize its value. As an example, use of the total variation functional is common in the following two kind of problems
- Numerical analysis of differential equations: it is the science of finding approximate solutions to differential equations. Applications of total variation to this problems are detailed in the article "total variation diminishing"
- Image denoising: in image processing, denoising is a collection of methods used to reduce the noise in an image reconstructed from data obtained by electronic means, for example data transmission or sensing. Total variation denoising is the name for the application of total variation to image noise reduction; further details can be found in the paper (Caselles, Chambolle & Novaga 2007).
See also
- Bounded variation
- Total variation diminishing
- Total variation denoising
- Quadratic variation
Notes
- ^ According to Golubov & Vitushkin (2001).
Bibliography
- Arzelà, Cesare (7 maggio 1905), "Sulle funzioni di due variabili a variazione limitata (On functions of two variables of bounded variation)" (in Italian), Rendiconto delle sessioni della Reale Accademia delle scienze dell'Istituto di Bologna, Nuova serie IX (4): 100–107, JFM 36.0491.02, archived from the original on 2007-08-07, http://www.archive.org/stream/rendicontodelle04bologoog#page/n121/mode/2up.
- Jordan, Camille (1881), "Sur la série de Fourier" (in French), Comptes rendus hebdomadaires des séances de l'Académie des sciences 92: 228–230, JFM 13.0184.01, http://gallica.bnf.fr/ark:/12148/bpt6k7351t/f227 (available at Gallica). This is, according to Boris Golubov, the first paper on functions of bounded variation.
- Hahn, Hans (1921) (in German), Theorie der reellen Funktionen, Berlin: Springer Verlag, pp. VII+600, JFM 48.0261.09, archived from the original on 2008-12-31, http://www.archive.org/details/theoriederreelle01hahnuoft.
- Vitali, Giuseppe (1908) [17 dicembre 1907], "Sui gruppi di punti e sulle funzioni di variabili reali (On groups of points and functions of real variables)" (in Italian), Atti dell'Accademia delle Scienze di Torino 43: 75–92, JFM 39.0101.05, archived from the original on 2009-03-31, http://www.archive.org/stream/attidellarealeac43real#page/228/mode/2up. The paper containing the first proof of Vitali covering theorem.
References
- Adams, C. Raymond; Clarkson, James A. (1933), "On definitions of bounded variation for functions of two variables", Transactions of the American Mathematical Society 35: 824–854, doi:10.1090/S0002-9947-1933-1501718-2, JFM 59.0285.01, MR1501718, Zbl 0008.00602, http://www.ams.org/journals/tran/1933-035-04/S0002-9947-1933-1501718-2/home.html.
- Cesari, Lamberto (1936), "Sulle funzioni a variazione limitata (On the functions of bounded variation)" (in Italian), Annali della Scuola Normale Superiore, II 5 (3-4): 299–313, JFM 62.0247.03, MR1556778, Zbl 0014.29605, http://www.numdam.org/item?id=ASNSP_1936_2_5_3-4_299_0. Available at Numdam.
- Saks, Stanisław (1937), Theory of the Integral, Monografie Matematyczne, 7 (2nd ed.), Warszawa-Lwów: G.E. Stechert & Co., pp. VI+347, JFM 63.0183.05, MR1556778, Zbl 0017.30004, http://matwbn.icm.edu.pl/kstresc.php?tom=7&wyd=10&jez=pl. (available at the Polish Virtual Library of Science). English translation from the original French by Laurence Chisholm Young, with two additional notes by Stefan Banach.
- Rudin, Walter (1966), Real and Complex Analysis, McGraw-Hill Series in Higher Mathematics (1st ed.), New York: McGraw-Hill, pp. xi+412, MR210528, Zbl 0142.01701.
External links
Theory
One variable
- Golubov, Boris I.; Vitushkin, Anatolii G. (2001), "Variation of a function", in Hazewinkel, Michiel, Encyclopaedia of Mathematics, Springer, ISBN 978-1556080104, http://eom.springer.de/V/v096110.htm
- "Total variation" on Planetmath.
Several variables
- Final comments of Anatolii Georgievich Vitushkin on the paper Golubov, Boris I.; Vitushkin, Anatolii G. (2001), "Variation of a function", in Hazewinkel, Michiel, Encyclopaedia of Mathematics, Springer, ISBN 978-1556080104, http://eom.springer.de/V/v096110.htm.
- Golubov, Boris I. (2001), "Arzelà variation", in Hazewinkel, Michiel, Encyclopaedia of Mathematics, Springer, ISBN 978-1556080104, http://eom.springer.de/a/a013470.htm.
- Golubov, Boris I. (2001), "Fréchet variation", in Hazewinkel, Michiel, Encyclopaedia of Mathematics, Springer, ISBN 978-1556080104, http://eom.springer.de/f/f041400.htm.
- Golubov, Boris I. (2001), "Hardy variation", in Hazewinkel, Michiel, Encyclopaedia of Mathematics, Springer, ISBN 978-1556080104, http://eom.springer.de/h/h046400.htm.
- Golubov, Boris I. (2001), "Pierpont variation", in Hazewinkel, Michiel, Encyclopaedia of Mathematics, Springer, ISBN 978-1556080104, http://eom.springer.de/p/p072720.htm.
- Golubov, Boris I. (2001), "Vitali variation", in Hazewinkel, Michiel, Encyclopaedia of Mathematics, Springer, ISBN 978-1556080104, http://eom.springer.de/h/h046400.htm.
- Golubov, Boris I. (2001), "Tonelli plane variation", in Hazewinkel, Michiel, Encyclopaedia of Mathematics, Springer, ISBN 978-1556080104, http://eom.springer.de/t/t092990.htm.
Measure theory
- Rowland, Todd, "Total Variation" from MathWorld..
- Jordan decomposition at PlanetMath..
Probability theory
- M. Denuit and S. Van Bellegem "On the stop-loss and total variation distances between random sums", discussion paper 0034 of the Statistic Institute of the "Université Catholique de Louvain".
Applications
- Caselles, Vicent; Chambolle, Antonin; Novaga, Matteo (2007), The discontinuity set of solutions of the TV denoising problem and some extensions, SIAM, Multiscale Modeling and Simulation, vol. 6 n. 3,, http://cvgmt.sns.it/papers/caschanov07/ (a work dealing with total variation application in denoising problems for image processing).
- Tony F. Chan and Jackie (Jianhong) Shen (2005), Image Processing and Analysis - Variational, PDE, Wavelet, and Stochastic Methods, SIAM, ISBN 0-89871-589-X (with in-depth coverage and extensive applications of Total Variations in modern image processing, as started by Rudin, Osher, and Fatemi).
Categories:
Wikimedia Foundation. 2010.