Crankcase

Crankcase
De Dion-Bouton engine from about 1905, in which can clearly be seen a discrete crankcase with upper and lower halves (each a casting), with the bottom half constituting both part of the main bearing support and also an oil sump.[1]

In an internal combustion engine of the reciprocating type, the crankcase is the housing for the crankshaft. The enclosure forms the largest cavity in the engine and is located below the cylinder(s), which in a multicylinder engine are usually integrated into one or several cylinder blocks. Crankcases have often been discrete parts, but more often they are integral with the cylinder bank(s), forming an engine block. Nevertheless, the area around the crankshaft is still usually called the crankcase. Crankcases and other basic engine structural components (e.g., cylinders, cylinder blocks, cylinder heads, and integrated combinations thereof) are typically made of cast iron or cast aluminium via sand casting. Today the foundry processes are usually highly automated, with a few skilled workers to manage the casting of thousands of parts.

A crankcase often has an opening in the bottom to which an oil pan is attached with a gasketed bolted joint. Some crankcase designs fully surround the crank's main bearing journals, whereas many others form only one half, with a bearing cap forming the other. Some crankcase areas require no structural strength from the oil pan itself (in which case the oil pan is typically stamped from sheet steel), whereas other crankcase designs do (in which case the oil pan is a casting in its own right). Both the crankcase and any rigid cast oil pan often have reinforcing ribs cast into them, as well as bosses which are drilled and tapped to receive mounting screws/bolts for various other engine parts.

Besides protecting the crankshaft and connecting rods from foreign objects, the crankcase serves other functions, depending on engine type. These include keeping the motor oil contained, usually hermetically or nearly hermetically (and in the hermetic variety, allowing the oil to be pressurized); providing the rigid structure with which to join the engine to the transmission; and in some cases, even constituting part of the frame of the vehicle (such as in many farm tractors).

Contents

Two-stroke engines

Two-stroke engine

In two-stroke gasoline engines, the crankcase is sealed and is used as a pressurization chamber for the fuel/air mixture. As the piston rises, it pushes out exhaust gases and produces a partial vacuum in the crankcase which aspirates fuel and air. As the piston travels downward, the fuel/air charge is pushed from the crankcase and into the cylinder.[2]

Unlike four-stroke gasoline engines, the crankcase does not contain engine oil because it handles the fuel/air mixture. Instead, oil is mixed in with the fuel, and the mixture provides lubrication for the cylinder walls, crankshaft and connecting rod bearings.

A majority of ships today use two stroke diesel engines, where the crankcase is completely separated from the cylinders. Unlike smaller engines, they usually have a separate tank below the crankcase as an oil holding tank (sump tank).

Four-stroke engines

Four-stroke engine

In a four-stroke engine, the crankcase is filled mainly with air and oil, and is largely sealed off from the fuel/air mixture by the pistons.

Oil circulation

Oil circulation is kept separate from the fuel/air mixture, thereby preserving oil rather than burning it as happens in two-stroke engines. Oil moves from its reservoir, is pressurized by an oil pump, and is pumped through the oil filter to remove grit. The oil is then squirted into the crankshaft and connecting rod bearings and onto the cylinder walls, and eventually drips off into the bottom of the crankcase.[3] In a wet sump system, oil remains in a reservoir at the bottom of the crankcase, referred to as the oil pan. In a dry sump system, oil is instead pumped to an external reservoir.[4]

Even in a wet sump system, the crankshaft has minimal contact with the sump oil. Otherwise, the high-speed rotation of the crankshaft would cause the oil to froth, making it difficult for the oil pump to move the oil, which can starve the engine of lubrication.[5] Small amounts of oil may splash onto the crankshaft during rough driving, referred to as windage.[6]

In a wet sump system, the main dipstick and oil filler cap connect to the crankcase.

Air ventilation

During normal operation, a small amount of unburned fuel and exhaust gases escape around the piston rings and enter the crankcase, referred to as "blow-by".[7] If these gases had no controlled escape mechanism, the gasketed joints would leak (as they "found their own way out"); also, if the gases remained in the crankcase and condensed, the oil would become diluted and chemically degraded over time, decreasing its ability to lubricate. Condensed water would also cause parts of the engine to rust.[8] To counter this, a crankcase ventilation system exists. In all modern vehicles, this consists of a channel to expel the gases out of the crankcase, through an oil-separating baffle, to the PCV valve, into the intake manifold. In a non-turbo engine, the intake manifold is at a lower pressure than the crankcase, providing the suction to keep the ventilation system going. A turbo engine usually has a check valve somewhere in the tubing to avoid pressurizing the crankcase when the turbo produces boost.

If an engine is damaged or enters old age, gaps can form between the cylinder walls and pistons, resulting in larger amounts of blow-by than the crankcase ventilation system can handle. The gaps cause power loss, and ultimately mean that the engine needs to be rebuilt or replaced.[7] Symptoms of excessive blow-by include oil being pushed up into the air filter, out the dipstick,[9] or out the PCV valve. In rare cases of serious piston or ring damage, the oil filter housing's sheet metal can even burst at its seam.

Open crank engine

Early internal combustion engines were of the "open crank" style, that is, there was no enclosed crankcase. The crankshaft, connecting rod, camshaft, gears, governor, etc. were all completely exposed and could be viewed in operation when the engine was running. This made for a messy environment as oil was thrown from the engine and could run on the ground. Another disadvantage was that dirt and dust could get on moving engine parts, causing excessive wear and possible malfunction of the engine. Frequent cleaning of the engine was required to keep it in normal working order.

References

  1. ^ Kennedy, Rankin (1912 edition of 1905 book.). The De Dion-Bouton Engine and Cars. The Book of Modern Engines and Power Generators. London: Caxton. pp. 78–89. 
  2. ^ The Compression Stroke in Two-stroke Engines at HowStuffWorks
  3. ^ Image:4-Stroke-Engine.gif How Car Engines Work at HowStuffWorks
  4. ^ Why do some engines use a dry sump oil system? at HowStuffWorks
  5. ^ October 1996 question on Car Talk
  6. ^ Jeff Huneycutt. "Oil Pans For Power". Circle Track magazine. http://www.circletrack.com/techarticles/76818/. Retrieved 2006-11-16. 
  7. ^ a b September 1999 question on Car Talk
  8. ^ January 2001 question on Car Talk
  9. ^ August 2002 question on Car Talk

Wikimedia Foundation. 2010.

Игры ⚽ Поможем написать курсовую

Look at other dictionaries:

  • crankcase — n. the housing for a crankshaft and connecting parts in an internal combustion engine. [WordNet 1.5] …   The Collaborative International Dictionary of English

  • crankcase — [kraŋk′kās΄] n. the metal casing that encloses the crankshaft of an internal combustion engine: see OIL PAN …   English World dictionary

  • crankcase — The lower part of the engine that surrounds the crankshaft. It contains the crankshaft, pistoncylinders, connecting rods and other moving parts of the engine. As well, in non air cooled engines, it has a number of internal passages for the… …   Dictionary of automotive terms

  • crankcase — The housing that encloses the crankshaft, camshaft, and many accessory drive gears of a reciprocating engine. The cylinders mount on the crankcase. The engine is attached to the airframe with the crankcase …   Aviation dictionary

  • crankcase — karteris statusas T sritis Energetika apibrėžtis Dėžės formos nejudama mašinos ar mechanizmo, vidaus degimo variklio, pavaros dalis, atstojanti dangtį ar atramą. Apatinė karterio dalis gali būti alyvos ar kito skysčio talpykla. atitikmenys: angl …   Aiškinamasis šiluminės ir branduolinės technikos terminų žodynas

  • Crankcase (Transformers) — Crankcase is the name of several characters in the various Transformers universes. Contents 1 Transformers: Generation 1 1.1 Marvel Comics 1.2 Dreamwave Productions 1.3 IDW Publishing …   Wikipedia

  • Crankcase dilution — is a phenomenon of internal combustion engines in which unburned diesel or gasoline accumulates in the crankcase. Excessively rich fuel mixture or incomplete combustion allows a certain amount of fuel to pass down between the pistons and cylinder …   Wikipedia

  • Crankcase ventilation system — A crankcase ventilation system is a way for gases to escape in a controlled manner from the crankcase of an internal combustion engine. A common type of such system is a positive crankcase ventilation (PCV) system, the heart of which is a PCV… …   Wikipedia

  • Crankcase heater — A crankcase heater is an electrical component in a compressor in an air conditioning system, heat pump system, or a chiller system. The crankcase heater is normally ON all the time even when the unit is not running, though temperature sensors and …   Wikipedia

  • Crankcase (G.I. Joe) — G.I. Joe character Illustration of Crankcase from G.I. Joe: Order of Battle. Art by Herb Trimpe. Crankcase Affiliation G.I. Joe Specialty A.W.E …   Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”