- Functional selectivity
-
Not to be confused with binding selectivity.
Functional selectivity (or “agonist trafficking”, “biased agonism”, “differential engagement” and “protean agonism”) is the ligand-dependent selectivity for certain signal transduction pathways in one and the same receptor. This can be present when a receptor has several possible signal transduction pathways. To which degree each pathway is activated thus depends on which ligand binds to the receptor.[1]
Contents
Functional vs. traditional selectivity
Functional selectivity has been proposed to broaden conventional definitions of pharmacology.
Traditional pharmacology posits that a ligand can be either classified as an agonist (full or partial), antagonist or more recently an inverse agonist through a specific receptor subtype, and that this characteristic will be consistent with all effector (second messenger) systems coupled to that receptor. While this dogma has been the backbone of ligand-receptor interactions for decades now, more recent data indicates that this classic definition of ligand-protein associations does not hold true for a number of compounds.
Functional selectivity posits that a ligand may inherently produce a mix of the classic characteristics through a single receptor isoform depending on the effector pathway coupled to that receptor. For instance, a ligand can not easily be classified as an agonist or antagonist, because it can be a little of both, depending on its preferred signal transduction pathways. Thus, such ligands must instead be classified on the basis of their individual effects in the cell, instead of being either an agonist or antagonist to a receptor.
It is also important to note that these observations were made in a number of different expression systems and therefore functional selectivity is not just an epiphenomenon of one particular expression system.
Examples
One notable example of functional selectivity occurs with the 5-HT2A receptor, as well as the 5-HT2C receptor. Serotonin, the main endogenous ligand of 5-HT receptors, is a functionally selective agonist at this receptor, activating phospholipase C (which leads to inositol triphosphate accumulation), but does not activate phospholipase A2, which would result in arachidonic acid signalling. However, the other endogenous compound Dimethyltryptamine activates arachidonic acid signalling at the 5-HT2A receptor, as do many exogenous hallucinogens such as DOB and LSD. Notably, LSD does not activate IP3 signalling through this receptor to any significant extent. This may explain why direct 5-HT2 agonists have psychedelic effects, whereas compounds that indirectly increase serotonin signalling at the 5-HT2 receptors, such as SSRIs, generally do not.[2]
See also
Footnotes
- ^ Simmons MA (June 2005). "Functional selectivity, ligand-directed trafficking, conformation-specific agonism: what's in a name?". Mol. Interv. 5 (3): 154–7. doi:10.1124/mi.5.3.4. PMID 15994454. http://molinterv.aspetjournals.org/cgi/content/full/5/3/154.
- ^ Jonathan D. Urban, William P. Clarke, Mark von Zastrow, David E. Nichols, Brian Kobilka, Harel Weinstein, Jonathan A. Javitch, Bryan L. Roth, Arthur Christopoulos, Patrick M. Sexton, Keith J. Miller, Michael Spedding and Richard B. Mailman (June 27). "Functional Selectivity and Classical Concepts of Quantitative Pharmacology". JPET 320 (1): 1–13. doi:10.1124/jpet.106.104463. PMID 16803859.
References
- Urban JD, Clarke WP, von Zastrow M, et al. (January 2007). "Functional selectivity and classical concepts of quantitative pharmacology". J. Pharmacol. Exp. Ther. 320 (1): 1–13. doi:10.1124/jpet.106.104463. PMID 16803859. http://jpet.aspetjournals.org/cgi/pmidlookup?view=long&pmid=16803859.
- Mailman RB, Gay EA (2004). "Novel Mechanisms of drug action: Functional selectivity at D2 dopamine receptors (a lesson for drug discovery)". Med Chem Res 13: 115–126. doi:10.1007/s00044-004-0017-7.
- Nelson CP, et al. (2004). "Functional selectivity of muscarinic receptor antagonists for inhibition of M3-mediated phosphoinositide responses in guinea pig urinary bladder and submandibular salivary gland". J Pharmacol Exp Ther. 310 (3): 1255–65. doi:10.1124/jpet.104.067140. PMID 15140916. http://jpet.aspetjournals.org/cgi/content/full/310/3/1255.
- Gay EA, et al. (2004). "Functional selectivity of D2 receptor ligands in a Chinese hamster ovary hD2L cell line: evidence for induction of ligand-specific receptor states". Mol Pharmacol 66 (1): 97–105. doi:10.1124/mol.66.1.97. PMID 15213300. http://molpharm.aspetjournals.org/cgi/content/full/66/1/97.
- Mottola DM, et al. (2002). "Functional Selectivity of Dopamine Receptors Agonists. I. Selective Activation of Postsynaptic Dopamine D2 Receptors Linked to Adenylate Cyclase". J Pharmacol Exp Ther. 301 (3): 1166–78. doi:10.1124/jpet.301.3.1166. PMID 12023552. http://jpet.aspetjournals.org/cgi/content/full/301/3/1166.
- Lawler CP, et al. (1999). "Interactions of the novel antipsychotic aripiprazole (OPC-14597) with dopamine and serotonin receptor subtypes". Neuropsychopharmacology 20 (6): 612–27. doi:10.1016/S0893-133X(98)00099-2. PMID 10327430. http://www.nature.com/npp/journal/v20/n6/pdf/1395282a.pdf.
- Kenakin T (1995). "Agonist-Receptor Efficacy. II. Agonist Trafficking of Receptor Signals". Trends Pharmacol Sci 16 (7): 232–8. doi:10.1016/S0165-6147(00)89032-X. PMID 7667897.
Categories:
Wikimedia Foundation. 2010.