DNA end

DNA end

DNA end or sticky end refers to the properties of the end of a molecule of DNA or a recombinant DNA molecule. The concept is important in molecular biology, especially in cloning or when subcloning inserts DNA into vector DNA. All the terms can also be used in reference to RNA. The sticky ends or cohesive ends form base pairs. Any two complementary cohesive ends can anneal, even those from two different organisms. This bondage is temporary however, and DNA ligase will eventually form a covalent bond between the sugar-phosphate residue of adjacent nucleotides to join the two molecules together.


Single-stranded DNA molecules

A single-stranded non-circular DNA molecule has two non-identical ends, the 3' end and the 5' end (usually pronounced "three prime end" and "five prime end"). The numbers refer to the numbering of carbon atoms in the deoxyribose, which is a sugar forming an important part of the backbone of the DNA molecule. In the backbone of DNA the 5' carbon of one deoxyribose is linked to the 3' carbon of another by a phosphate group. The 5' carbon of this deoxyribose is again linked to the 3' carbon of the next, and so forth.

Variations in double-stranded molecules

When a molecule of DNA is double stranded, as DNA usually is, the two strands run in opposite directions. Therefore, one end of the molecule will have the 3' end of strand 1 and the 5' end of strand 2, and vice versa in the other end. However, the fact that the molecule is two stranded allows numerous different variations.

Blunt ends

The simplest DNA end of a double stranded molecule is called a blunt end. In a blunt-ended molecule both strands terminate in a base pair. Blunt ends are not always desired in biotechnology since when using a DNA ligase to join two molecules into one, the yield is significantly lower with blunt ends. When performing subcloning, it also has the disadvantage of potentially inserting the insert DNA in the opposite orientation desired. On the other hand, blunt ends are always compatible with each other. Here is an example of a small piece of blunt-ended DNA:


Overhangs and sticky ends

Non-blunt ends are created by various overhangs. An overhang is a stretch of unpaired nucleotides in the end of a DNA molecule. These unpaired nucleotides can be in either strand, creating either 3' or 5' overhangs. These overhangs are in most cases palindromic.

The simplest case of an overhang is a single nucleotide. This is most often adenosine and is created as a 3' overhang by some DNA polymerases. Most commonly this is used in cloning PCR products created by such an enzyme. The product is joined with a linear DNA molecule with 3' thymine overhangs. Since adenine and thymine form a base pair, this facilitates the joining of the two molecules by a ligase, yielding a circular molecule. Here is an example of an A-overhang:


Longer overhangs are called cohesive ends or sticky ends. They are most often created by restriction endonucleases when they cut DNA. Very often they cut the two DNA strands four base pairs from each other, creating a four-base 5' overhang in one molecule and a complementary 5' overhang in the other. These ends are called cohesive since they are easily joined back together by a ligase. Also, since different restriction endonucleases usually create different overhangs, it is possible to cut a piece of DNA with two different enzymes and then join it with another DNA molecule with ends created by the same enzymes. Since the overhangs have to be complementary in order for the ligase to work, the two molecules can only join in one orientation. This is often highly desirable in molecular biology.

For example, these two "sticky" ends are compatible:


They can form complementary base pairs in the overhang region:


Frayed ends

Across from each single strand of DNA, we typically see adenine pair with thymine, and cytosine pair with guanine to form a parallel complementary strand as described below. Two nucleotide sequences which correspond to each other in this manner are referred to as complementary:



A frayed end refers to a region of a double stranded (or other multi-stranded) DNA molecule near the end with a significant proportion of non-complementary sequences; that is, a sequence where nucleotides on the adjacent strands do not match up correctly:


The term "frayed" is used because the incorrectly matched nucleotides tend to avoid bonding, thus appearing similar to the strands in a fraying piece of rope.

Although non-complementary sequences are also possible in the middle of double stranded DNA, mismatched regions away from the ends are not referred to as "frayed".


  • Sambrook, Joseph; David Russell (2001). Molecular Cloning: A Laboratory Manual. New York: Cold Spring Harbor Laboratory Press.

Wikimedia Foundation. 2010.

Игры ⚽ Поможем решить контрольную работу

Look at other dictionaries:

  • DNA ligase — repairing chromosomal damage Identifiers EC number …   Wikipedia

  • DNA repair — For the journal, see DNA Repair (journal). DNA damage resulting in multiple broken chromosomes DNA repair refers to a collection of processes by which a cell identifies and corrects damage to the DNA molecules that encode its genome. In human… …   Wikipedia

  • DNA-PKcs — Protein kinase, DNA activated, catalytic polypeptide Identifiers Symbols PRKDC; DNA PKcs; DNAPK; DNPK1; HYRC; HYRC1; XRCC7; p350 External IDs …   Wikipedia

  • DNA polymerase lambda — Polymerase (DNA directed), lambda Rendering based on 1xsn of pol λ bound to a DNA strand containing a 1 nt gap …   Wikipedia

  • DNA replication — DNA replication. The double helix is unwound and each strand acts as a template for the next strand. Bases are matched to synthesize the new partner strands. DNA replication is a biological process that occurs in all living organisms and copies… …   Wikipedia

  • DNA nanotechnology — seeks to make artificial, designed nanostructures out of nucleic acids, such as this DNA tetrahedron.[1] Each edge of the tetrahedron is a 20 base pair DNA double helix, and each vertex is a three arm junction. DNA n …   Wikipedia

  • DNA sequencing theory — is the broad body of work that attempts to lay analytical foundations for DNA sequencing. The practical aspects revolve around designing and optimizing sequencing projects (known as strategic genomics ), predicting project performance,… …   Wikipedia

  • DNA mismatch repair — is a system for recognizing and repairing erroneous insertion, deletion and mis incorporation of bases that can arise during DNA replication and recombination, as well as repairing some forms of DNA damage.[1][2] Mismatch repair is strand… …   Wikipedia

  • DNA-encoded chemical library — DNA encoded chemical libraries (DEL) are a new technology for the synthesis and screening of collections of chemical compounds of unprecedented size and quality. DEL represents an advance in medicinal chemistry which bridges the fields of… …   Wikipedia

  • DNA (Red Dwarf) — DNA Red Dwarf episode Episode no. Series 4 Episode 2 Directed by Ed Bye Written by …   Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”