- Comparison of wireless data standards
-
A comparison of wireless data standards can be made by several different measures.
Contents
Introduction
A wide variety of different wireless data technologies exist, some in direct competition with one another, others designed for specific applications. Wireless technologies can be evaluated by a variety of different metrics described below.
Standards can be grouped as follows:
UWB, Bluetooth, ZigBee, and Wireless USB are intended for use as wireless personal area network (PAN) systems. They are intended for short range communication between devices typically controlled by a single person. A keyboard might communicate with a computer, or a mobile phone with a handsfree kit, using any of these technologies.
Wi-Fi is a product name for a system intended for a Wireless Local Area Network (WLAN). A WLAN is an implementation of a LAN over a microcellular wireless system. Such systems are used to provide wireless Internet access (and access to other systems on the local network such as other computers, shared printers, and other such devices) throughout a local area. Typically a WLAN offers much better rate and latency than the user's Internet access, being designed for local communication. While Wi-Fi may be offered in many places as an Internet access system, access speeds are usually more limited by the shared Internet connection and number of users than the technology itself. Other systems that provide WLAN functionality include DECT and HIPERLAN.
GPRS, EDGE and 1xRTT evolved from 2G cellular systems, providing Internet access to users of existing 2G networks. Both EDGE and 1xRTT are 3G standards, as defined by the ITU, but are generally deployed on existing networks. 3G systems such as EV-DO, W-CDMA (including HSDPA and HSUPA) provide combined circuit switched and packet switched data and voice services, usually at better data rates than the 2G extensions. All of these services can be used to provide combined mobile phone access and Internet access at remote locations. Typically GPRS and 1xRTT provide stripped down, mobile phone oriented, Internet access, such as WAP, multimedia messaging, and the downloading of ring-tones, whereas EV-DO and HSDPA's higher speeds make them suitable for use as a broadband replacement.
Pure packet-switched only systems can be created using 3G network technologies, and UMTS-TDD is one example of this. Alternatively, next generation systems such as WiMAX also provide pure packet switched services with no need to support the circuit switching services required for voice systems. WiMAX is available in multiple configurations, including both NLOS and LOS variants. UMTS-TDD, WiMAX, and proprietary systems such as Canopy are used by Wireless ISPs to provide broadband access without the need for direct cable access to the end user.
Some systems are designed for point-to-point line-of-sight communications, once 2 such nodes get too far apart they can no longer communicate. Other systems are designed to form a wireless mesh network using one of a variety of routing protocols. In a mesh network, when nodes get too far apart to communicate directly, they can still communicate indirectly through intermediate nodes.
Standards
The following standards are included in this comparison.
Wide Area (WAN)
- RTT
- EDGE
- EV-DO x1 Rev 0, Rev A, Rev B and x3 standards.
- Flash-OFDM: FLASH(Fast Low-latency Access with Seamless Handoff)-OFDM (Orthogonal Frequency Division Multiplexing)
- GPRS
- HSPA D and U standards.
- iBurst
- LTE
- UMTS over W-CDMA
- UMTS-TDD
- Wi-Fi: 802.11 standard
- WiMAX: 802.16 standard
Local Area (WLAN)
- Wi-Fi: 802.11a, 802.11b, 802.11g, 802.11n standards.
Personal Area (WPAN)
- Bluetooth V4.0 with standard protocol and with low energy protocol
- Wibree
- IEEE 802.15.4-2006
- Wireless USB
- UWB
- 6loWPAN
- ONE-NET
Wireless Video Networks (WVAN-TV)
Currently no common nor standardised use of this term with IETF or IEEE. See WVAN-TV
Vehicle Area (WVAN)
There is currently no common use of this term with IETF or IEEE. See[1]
Overview
Comparison of Mobile Internet Access methods ( )Common
NameFamily Primary Use Radio Tech Downstream
(Mbit/s)Upstream
(Mbit/s)Notes HSPA+ 3GPP Used in 4G CDMA/FDD
MIMO21
42
84
6725.8
11.5
22
168HSPA+ is widely deployed. Revision 11 of the 3GPP states that HSPA+ is expected to have a throughput capacity of 672 Mbps. LTE 3GPP General 4G OFDMA/MIMO/SC-FDMA 100 Cat3
150 Cat4
300 Cat5
(in 20 MHz FDD) [2]50 Cat3/4
75 Cat5
(in 20 MHz FDD)[2]LTE-Advanced update expected to offer peak rates up to 1 Gbit/s fixed speeds and 100 Mb/s to mobile users. WiMAX 802.16 Mobile Internet cf. 802.16e MIMO-SOFDMA 128 (in 20 MHz bandwidth FDD) 56 (in 20 MHz bandwidth FDD) WiMAX update IEEE 802.16m is to offer peak rates of at least 1 Gbit/s fixed speeds and 100 Mbit/s to mobile users.[3] Flash-OFDM Flash-OFDM Mobile Internet
mobility up to 200 mph (350 km/h)Flash-OFDM 5.3
10.6
15.91.8
3.6
5.4Mobile range 30 km (18 miles)
extended range 55 km (34 miles)HIPERMAN HIPERMAN Mobile Internet OFDM 56.9 Wi-Fi 802.11
(11n)Mobile Internet OFDM/MIMO 300 (using 4x4 configuration in 20 MHz bandwidth) or 600 (using 4x4 configuration in 40 MHz bandwidth) Antenna, RF front end enhancements and minor protocol timer tweaks have helped deploy long range P2P networks compromising on radial coverage, throughput and/or spectra efficiency (310 km & 382 km)
iBurst 802.20 Mobile Internet HC-SDMA/TDD/MIMO 95 36 Cell Radius: 3–12 km
Speed: 250 km/h
Spectral Efficiency: 13 bits/s/Hz/cell
Spectrum Reuse Factor: "1"EDGE Evolution GSM Mobile Internet TDMA/FDD 1.6 0.5 3GPP Release 7 UMTS W-CDMA
HSDPA+HSUPAUMTS/3GSM General 3G CDMA/FDD
CDMA/FDD/MIMO0.384
14.40.384
5.76HSDPA is widely deployed. Typical downlink rates today 2 Mbit/s, ~200 kbit/s uplink; HSPA+ downlink up to 56 Mbit/s. UMTS-TDD UMTS/3GSM Mobile Internet CDMA/TDD 16 Reported speeds according to IPWireless using 16QAM modulation similar to HSDPA+HSUPA EV-DO Rel. 0
EV-DO Rev.A
EV-DO Rev.BCDMA2000 Mobile Internet CDMA/FDD 2.45
3.1
4.9xN0.15
1.8
1.8xNRev B note: N is the number of 1.25 MHz chunks of spectrum used. EV-DO is not designed for voice, and requires a fallback to 1xRTT when a voice call is placed or received. Notes: All speeds are theoretical maximums and will vary by a number of factors, including the use of external antennae, distance from the tower and the ground speed (e.g. communications on a train may be poorer than when standing still). Usually the bandwidth is shared between several terminals. The performance of each technology is determined by a number of constraints, including the spectral efficiency of the technology, the cell sizes used, and the amount of spectrum available. For more information, see Comparison of wireless data standards.
For more comparison tables, see bit rate progress trends, comparison of mobile phone standards, spectral efficiency comparison table and OFDM system comparison table.
Peak bit rate and throughput
The peak bit rate of the standard is the net bit rate provided by the physical layer in the fastest transmission mode (using the fastest modulation scheme and error code), excluding forward error correction coding and other physical layer overhead. In practice, higher layer overhead causes the maximum throughput to be lower than the peak data rate. The typical throughput however is hard to measure, and depends on many protocol issues such as transmission schemes (slower schemes are used at longer distance from the access point), packet retransmissions and packet size. The real throughput is even lower because of other traffic sharing the same network or cell, and other facts.
For PAN and LAN standards like WiFi these levels of performance are attainable under ideal radio conditions (that is, a complete lack of interference and at close range without obstacles). For WAN standards, though, these figures are often impractical to achieve (for instance they assume you are the only user in the cell) or are not implemented or provisioned by any providers in such a way.
The typical throughput is what users have experienced most of the time when well within the usable range to the base station. This value is not known for the newest experimental standards. Note that these figures cannot be used to predict the performance of any given standard in any given environment, but rather as benchmarks against which actual experience might be compared.
Bit rate (Mbit/s) Standard Peak Downlink Peak Uplink Range Typical Downlink throughput CDMA RTT 1x 0.3072 0.1536 ~18 mi 0.125 CDMA EV-DO Rev. 0 2.4580 0.1536 ~18 mi 0.75[citation needed] CDMA EV-DO Rev. A 3.1000 1.8000 ~18 mi CDMA EV-DO Rev. B 4.9000 1.8000 ~18 mi GSM GPRS Class 10 0.0856 0.0428 ~16 mi 0.014[citation needed] GSM EDGE type 2 0.4736 0.4736 ~16 mi 0.034[citation needed] GSM EDGE Evolution 1.8944 0.9472 ~16 mi UMTS W-CDMA R99 0.3840 0.3840 ~18 mi 0.195[citation needed] UMTS W-CDMA HSDPA 14.400 0.3840 up to 124 mi[4] 4.1[citation needed] (Tre 2007) UMTS W-CDMA HSUPA 14.400 5.7600 up to 124 mi[4] UMTS W-CDMA HSPA+ 42.000 22.000 up to 124 mi[4] UMTS-TDD 16.000[5] 16.000 LTE 326.4 86.4 iBurst: iBurst 24 8 ~7.5 mi >2 Flash-OFDM: Flash-OFDM 5.3 1.8 ~18 mi avg 2.5[citation needed] WiMAX: 802.16e 70.000 70.000 ~4 mi >10[citation needed] WiFi: 802.11a 54.000 54.000 WiFi: 802.11b 11.000 11.000 ~30 meters 2[citation needed] WiFi: 802.11g 54.000 54.000 ~30 meters 10[citation needed] WiFi: 802.11n 200.00 200.00 ~50 meters 40[citation needed] - Downlink is the throughput from the base station to the user handset or computer.
- Uplink is the throughput from the user handset or computer to the base station.
- Range is the maximum range possible to receive data at 25% of the typical rate.
Latency
The latency is the time taken for the smallest packet to travel between the user terminal and base station including average time for checking, correcting and repetition.
Spectral use and efficiency
Frequency
Allocated Frequencies Standard Frequencies Spectrum Type UMTS over W-CDMA 850 MHz, 1.9, 1.9/2.1, and 1.7/2.1 GHz Licensed (Cellular/PCS/3G/AWS) UMTS-TDD 450, 850 MHz, 1.9, 2, 2.5, and 3.5 GHz[6]
2 GHzLicensed (Cellular, 3G TDD, BRS/IMT-ext, FWA)
Unlicensed (see note)CDMA2000 (inc. EV-DO, 1xRTT) 450, 850, 900 MHz 1.7, 1.8, 1.9, and 2.1 GHz Licensed (Cellular/PCS/3G/AWS) EDGE/GPRS 850 MHz 900 MHz 1.8 GHz 1.9 GHz Licensed (Cellular/PCS/PCN) iBurst 1.8, 1.9 and 2.1 GHz Licensed Flash-OFDM 450 and 870 MHz Licensed 802.16e 2.3, 2.5, 3.5, 3.7 and 5.8 GHz Licensed 802.11a 5.25, 5.6 and 5.8 GHz Unlicensed 802.11a and ISM 802.11b/g/n 2.4 GHz Unlicensed ISM Bluetooth 2.4 GHz Unlicensed ISM Wibree 2.4 GHz Unlicensed ISM 802.15.4 868 MHz, 915 MHz, 2.4 GHz Unlicensed ISM Wireless USB, UWB 3.1 to 10.6 GHz Unlicensed Ultrawideband VEmesh* 868 MHz, 915 MHz, 953 MHz Unlicensed ISM EnOcean* 868.3 MHz Unlicensed ISM Notes
- Where EnOcean and VEmesh are proprietary solutions.
- Where X/YxHz is used (e.g. 1.7/2.1 GHz), the first frequency is used for the uplink channels and the second for the downlink channels.
- Unlicensed frequencies vary in how they can be used. 802.11a can make use of both 802.11a-only spectrum and ISM spectrum around 5–6 GHz. A portion of the 2010 MHz spectrum is allocated to unlicensed UMTS-TDD in Europe, but cannot be used for other standards, whereas ISM bands can generally be used for any technology. This improved flexibility does have the downside that ISM bands are often over-used with incompatible, interfering, technologies.
- Unlicensed bands vary from country to country. Most have a 2.4 GHz ISM band, but other bands are only available in certain countries and non ISM bands have restrictions as noted above.
- In Europe, part of the 2 GHz 3G TDD band is designated as unlicensed, but where available is restricted to UMTS TDD operation.[7] To date, this has been left unused and some jurisdictions are re-allocating it to licensed use only.
- AMPS/CDMA users tend to refer to 850 MHz band as 800 MHz, whereas 850 MHz is closer and is used by the GSM/UMTS community. For consistency, it is referred to here as 850 MHz.
Deployment size
Allocated Spectrum per Channel (MHz) Standard Spectrum Total Uplink Downlink iBurst 5 802.16e 10 Variable Variable 802.11a 20 802.11b 20 802.11g 20 802.11n 20 or 40 EVDO 1x A 2.5 1.25 1.25 EVDO 3x B 10 5 5 UMTS (W-CDMA) 10 5 5 UMTS-TDD 5 5/TDD 5/TDD Spectral efficiency
(Bits per second per Hz)Standard Downlink Uplink iBurst 4.88 1.59 802.16e 1.91 0.84 EVDO 1x A 0.85 0.36 EVDO 3x B 0.93 0.28 HSDPA 0.78 0.14 HSUPA 0.78 0.30 See also
- Comparison of mobile phone standards
- List of device bandwidths
- OFDM system comparison table
- Spectral efficiency comparison table
References
- ^ [www.motorola.com/staticfiles/.../Multi-net%20Mobility_FAQ.pdf]
- ^ a b "LTE". 3GPP web site. 2009. http://www.3gpp.org/article/lte. Retrieved August 20, 2011.
- ^ "UQ (Japan) WiMAX 2 field trial". http://www.uqwimax.jp/english/news_release/201107061.html. Retrieved July 6, 2011.
- ^ a b c Ericsson, Telstra Achieve World's First 200km Cell Range Mobile Broadband Coverage
- ^ IPWireless
- ^ UMTS-TDD developer's frequency notes
- ^ ERC/DEC/(99)25 EU Recommendation on UMTS TDD, Annex 1, points 5 and 6
External links
- iBurst - Information
- Flash-OFDM - Information & Overview
- Mobile WiMAX - Part I: A Technical Overview and Performance Evaluation
- Mobile WiMAX – Part II: A Comparative Analysis
- 802.11b/a - A physical medium comparison
- A Comparison of Bluetooth and IEEE 802.11
- WLAN Trainer at different speeds
- IEEE 802.11 Standard Overview
- The Next Generation of Wireless LAN Emerges with 802.11n
- Mobile Broadband: The Global Evolution of UMTS/HSPA – 3GPP Release 7 and Beyond
Cellular network standards 0G (radio telephones) 1G AMPS familyOther2G 3GPP2 familycdmaOne (TIA/EIA/IS-95 and ANSI-J-STD 008)AMPS familyD-AMPS (IS-54 and IS-136)Other2G transitional
(2.5G, 2.75G)3GPP2 familyCDMA2000 1X (TIA/EIA/IS-2000) · 1X AdvancedOther3G (IMT-2000) 3GPP family3GPP2 familyCDMA2000 1xEV-DO Release 0 (TIA/IS-856)3G transitional
(3.5G, 3.75G, 3.9G)3GPP family3GPP2 familyIEEE family4G
(IMT-Advanced)3GPP familyIEEE familyWiMAX-Advanced (IEEE 802.16m)5G Research concept, not under formal developmentLinks Related articlesExternal linksCategories:- Computing comparisons
- Wireless networking
- Telecommunications standards
Wikimedia Foundation. 2010.