Modern searches for Lorentz violation

Modern searches for Lorentz violation

Important motivations for modern searches for Lorentz violation are deviations from Lorentz invariance (and thus special relativity) predicted by some variations of quantum gravity, string theory, and some alternatives to general relativity. Besides the fundamental predictions of special relativity, such as the principle of relativity, the constancy of the speed of light in all inertial frames of reference, and time dilation, also the predictions of the standard model of particle physics are considered to be modified by possible Lorentz violations.

To assess and predict possible violations, test theories of special relativity and effective field theories (EFT) such as the Standard-Model Extension (SME), have been invented. These models operate by introducing preferred frame effects. For example, modifications of the dispersion relation should lead to differences between the limiting velocity of matter and the speed of light. Also the parameterized post-Newtonian formalism as a test theory for general relativity can be used to describe preferred frame effects. Another model including different Lorentz violations is doubly special relativity (DSR), which preserves the Planck energy as an invariant maximum energy-scale, yet without having a preferred reference frame.

Both terrestrial as well as astronomical experiments have been carried out, and new experimental techniques have been introduced. No Lorentz violations could be measured thus far, and exceptions in which positive results were reported, have been refuted or lack further confirmations. For discussions of many experiments, see Mattingly (2005).[1] For a detailed list of results of recent experimental searches, see Alan Kostelecký and Russell (2011).[2] See also the main article Tests of special relativity.


Isotropy of the speed of light

Experiments with optical resonators, by which deviations from the isotropy of the speed of light are tested, can be seen as modern variants of the Michelson–Morley experiment to test orientation dependence of the speed of light, and the Kennedy–Thorndike experiment to test velocity dependence. The anisotropy parameters are given using the Robertson-Mansouri-Sexl test theory (RMS), which allows to distinguish between the relevant orientation- and velocity dependent values. The current precision, by which an anisotropy of the speed of light can be excluded, is at the 10 − 17 level. This is related to the relative velocity between the solar system and the rest frame of the cosmic microwave background radiation of ∼368 km/s (see also Resonator Michelson–Morley experiments)

Orientation dependence
Author Year RMS bounds Anisotropy of c
Herrmann et al.[3] 2009 \scriptstyle(4\pm8)\times10^{-12}
Eisele et al.[4] 2009 \scriptstyle(-1.6\pm6\pm1.2)\times10^{-12}
Müller et al.[5] 2007
Stanwix et al.[6] 2006 \scriptstyle9.4(8.1)\times10^{-11}
Herrmann et al.[7] 2005 \scriptstyle(-2.1\pm1.9)\times10^{-10}
Stanwix et al.[8] 2005 \scriptstyle-0.9(2.0)\times10^{-10}
Antonini et al.[9] 2005 \scriptstyle(+0.5\pm3\pm0.7)\times10^{-10}
Wolf et al.[10] 2004
Wolf et al.[11] 2004 \scriptstyle(+1.2\pm2.2)\times10^{-9}
Müller et al.[12] 2003 \scriptstyle(+2.2\pm1.5)\times10^{-9}
Wolf et al.[13] 2003 \scriptstyle(+1.5\pm4.2)\times10^{-9}
Brillet & Hall[14] 1979 \scriptstyle\leq3.2\times10^{-9}
Velocity dependence
Author Year RMS bounds
Tobar et al. [15] 2009 \scriptstyle\leq-4,8(3,7)\times10^{-8}
Wolf et al.[16] 2004 \scriptstyle\leq(3.7\pm3.0)\times10^{-7}
Braxmeier et al.[17] 2002 \scriptstyle\leq(1.9\pm2.1)\times10^{-5}
Hils and Hall[18] 1990 \scriptstyle\leq6.6\times10^{-5}

Time dilation

The classic time dilation experiments such as the Ives–Stilwell experiment, the Moessbauer rotor experiments, and the Time dilation of moving particles, have been enhanced by modernized equipment. For example, the Doppler shift of lithium ions traveling at high speeds is evaluated by using saturated spectroscopy in heavy ion storage rings. The current precision, with which time dilation is measured, is at the 10 − 8 level. Chou et al. (2010) even managed to measure a frequency shift of ∼10 − 16 due to time dilation, namely at every day's speeds such as 36 km/h.[19] For more information, see Modern Ives–Stilwell experiments.

Author Year Velocity Maximum deviation
from time dilation
Novotny et al.[20] 2009 0,34c \scriptstyle \leq1.3\times10^{-6}
Reinhardt et al.[21] 2007 0,064c \scriptstyle \leq8.4\times10^{-8}
Saathoff et al.[22] 2003 0,064c \scriptstyle \leq2.2\times10^{-7}
Grieser et al.[23] 1994 0,064c \scriptstyle \leq1\times10^{-6}

Clock anisotropy

By this kind of spectroscopy experiments – called Hughes–Drever experiments as well – violations of Lorentz invariance in the interactions of protons and neutrons are investigated, caused by a possible existence of a preferred frame. The energy levels of those nucleons are studied in order to find anisotropies in their frequencies ("clocks"). Clock anisotropy experiments are currently the most sensitive terrestrial ones, because the current precision by which Lorentz violations can be excluded, lies at the 10 − 33 GeV level. Using spin-polarized torsion balances, also anisotropies with respect to electrons can be examined.

Author Year SME-Anisotropy in GeV
Proton Neutron
Smiciklas et al.[24] 2011 10−29
Gemmel et al.[25] 2010 10−32
Brown et al.[26] 2010 10−32 10−33
Altarev et al.[27] 2009 10−20
Wolf et al.[28] 2006 10−25
Canè et al.[29] 2004 10−32
Humphrey et al.[30] 2003 10−27
Walsworth et al.[31] 2000 10−27 10−31
Bear et al.[32] 2000 10−31
Berglund et al.[33] 1995 10−27 10−30
Chupp et al.[34] 1989 10−27
Lamoreaux et al.[35] 1989 10−29
Prestage et al.[36] 1985 10−27
Author Year SME-Anisotropy
in GeV
Heckel et al.[37] 2008 10−31
Heckel et al.[38] 2006 10−30
Hou et al.[39] 2003 10−29
Humphrey et al.[30] 2003 10−27
Phillips et al.[40] 2000 10−27
Berglund et al.[33] 1995 10−27
Wang et al.[41] 1993 10−27
Wineland et al.[42] 1991 10−25
Phillips[43] 1987 10−27

Antimatter tests

Lorentz symmetry is closely connected to CPT symmetry, from which a symmetry between matter and antimatter follows. This can be tested by using Penning traps, by which individual charged particles and there counterparts are trapped. Gabrielse et al. (1999) examined cyclotron frequencies in proton-antiproton measurements, and couldn't find any deviation down to 9\cdot10^{-11}.[44]

Hans Dehmelt et al. tested the anomaly frequency, which plays a fundamental role in the measurement of the electron's gyromagnetic ratio. They searched for sidereal variations, and differences between electrons and positrons as well. Eventually they found no deviations, thereby establishing bounds of 10 − 24 GeV.[45]

Hughes et al. (2001) examined muons for sidereal signals in the spectrum of muons, and found no Lorentz violation down to 10 − 23 GeV.[46] The "Muon g-2" collaboration of the Brookhaven National Laboratory searched for deviations in the anomaly frequency of muons and anti-muons, and for sidereal variations under consideration of Earth's orientation. Also here, no Lorentz violations could be found, with a precision of 10 − 24 GeV.[47]

Astronomic photon tests


Dispersion of light (i.e. the dependence of light speed on its energy) from distant astronomic sources as a possible consequence of Lorentz violation has been tested in many experiments. In the context of some models of quantum gravity (QG), it was assumed that such violations should occur at energy levels similar to, or beyond the Planck energy of \sim1.22\times10^{19} GeV. In the following papers, light from gamma ray bursts and from distant galaxies etc. are used to measure such relations. Especially the Fermi-LAT group was able show, that no energy dependence and thus no Lorentz violation occurs in the photon sector even beyond the Planck energy limit, since they observed photon energies up to 31 GeV.[48] So a large class of Lorentz violating quantum gravity models is excluded by that.

Name Year QG-Bounds in GeV
Fermi-LAT-GBM-Collaboration[48] 2009 \scriptstyle >1.46\times10^{19}
H.E.S.S.-Collaboration[49] 2008 \scriptstyle \geq7.2\times10^{17}
MAGIC-Collaboration[50] 2007 \scriptstyle \geq0.21\times10^{18}
Lamon et al.[51] 2008 \scriptstyle \geq3.2\times10^{11}
Martinez et al.[52] 2006 \scriptstyle \geq0.66\times10^{17}
Ellis et al.[53][54] 2006/8 \scriptstyle \geq1.4\times10^{16}
Boggs et al.[55] 2004 \scriptstyle \geq1.8\times10^{17}
Ellis et al.[56] 2003 \scriptstyle \geq6.9\times10^{15}
Ellis et al.[57] 2000 \scriptstyle \geq10^{15}
Schaefer[58] 1999 \scriptstyle \geq2.7\times10^{16}
Biller[59] 1999 \scriptstyle >4\times10^{16}
Kaaret[60] 1999 \scriptstyle >1.8\times10^{15}


Due to Lorentz violations, such as the presence of an anisotropic space, also vacuum birefringence and parity violations could occur. Researches have been undertaken to detect deviations in the polarization of photons, for instance the rotation of the polarization plane due to velocity differences between left- and right photons. In the following publications, gamma ray bursts, galactic radiation, and the Cosmic microwave background radiation are examined. The SME coefficients  \scriptstyle k_{(V)00}^{(3)} and \scriptstyle k_{(V)00}^{(5)} (the latter corresponds to ξ in another EFT[61]) for Lorentz violation are given, where 3 and 5 denote the mass dimensions used. No significant Lorentz violations could be measured up to now.[2]

Name Year SME bounds EFT bounds
Laurent et al.[62] 2011 \scriptstyle k_{(V)00}^{(5)}\leq1.9\times10^{-33} GeV-1 \scriptstyle \xi\leq1.1\times10^{-14}
Stecker[61] 2011 \scriptstyle k_{(V)00}^{(5)}\leq4.2\times10^{-34} GeV-1 \scriptstyle \xi\leq2.4\times10^{-15}
Kostelecký et al.[63] 2009 \scriptstyle k_{(V)00}^{(5)}\leq1\times10^{-32} GeV-1 \scriptstyle \xi\leq9\times10^{-14}
QUaD Collaboration[64] 2008 \scriptstyle k_{(V)00}^{(3)}\leq2\times10^{-43} GeV
Kostelecký et al.[65] 2008 \scriptstyle k_{(V)00}^{(3)}=(2.3\pm5.4)\times10^{-43} GeV
Maccione et al.[66] 2008 \scriptstyle k_{(V)00}^{(5)}\leq1.5\times10^{-28} GeV-1 \scriptstyle \xi\leq9\times10^{-10}
Komatsu et al.[67] 2008 \scriptstyle k_{(V)00}^{(3)}=(1.2\pm2.2)\times10^{-43} GeV
Kahniashvili et al.[68] 2008 \scriptstyle k_{(V)00}^{(3)}\leq2.5\times10^{-43} GeV
Xia et al.[69] 2008 \scriptstyle k_{(V)00}^{(3)}=(2.6\pm1.9)\times10^{-43} GeV
Cabella et al.[70] 2007 \scriptstyle k_{(V)00}^{(3)}=(2.5\pm3.0)\times10^{-43} GeV
Fan et al.[71] 2007 \scriptstyle k_{(V)00}^{(5)}\leq3.4\times10^{-26} GeV-1 \scriptstyle \xi\leq2\times10^{-7}
Feng et al.[72] 2006 \scriptstyle k_{(V)00}^{(3)}=(6.0\pm4.0)\times10^{-43} GeV
Gleiser et al.[73] 2001 \scriptstyle k_{(V)00}^{(5)}\leq8.7\times10^{-23} GeV-1 \scriptstyle \xi\leq2\times10^{-4}
Carroll et al.[74] 1990 \scriptstyle k_{(V)00}^{(3)}\leq2\times10^{-42} GeV

Vacuum Cherenkov radiation

Exceedance of the threshold energy could lead to a difference between the speed of photons, and the limiting velocity of any particle having a charge structure (protons, electrons, neutrinos), since the dispersion relation is assumed to be modified in Lorentz violating EFT models such as SME. Depending on which of these particles travels faster or slower than the speed of light, otherwise forbidden processes can occur:[75][76]

  • Decay at superluminal speed of photons. These photons quickly decay into other particles, which means that high energy light cannot propagate over long distances. So the mere existence of high energy light from astronomic sources constrains possible deviations from the limiting velocity.
  • Vacuum Cherenkov radiation at superluminal speed of any particle (protons, electrons, neutrinos) having a charge structure. In this case, emission of Bremsstrahlung can occur, until the particle falls below threshold and subluminal speed is reached again. This is similar to the known Cherenkov radiation in media, in which particles are traveling faster than the phase velocity of light in that medium. Deviations from the limiting velocity can be constrained, by observing high energy particles of distant astronomic sources that reach Earth.
  • The rate of synchrotron radiation could be modified, if the limiting velocity between charged particles and photons is different.

However, since astronomic measurements also contain additional assumptions – like the unknown conditions at the emission or along the path traversed by the particles, or the nature of the particles –, terrestrial measurements provide results of higher significance, even though the bounds are lower (the following bounds describe maximal deviations between the speed of light and the limiting velocity of matter):

Name Year SME bounds Particle Astr./Terr.
Photon decay Cherenkov Synchrotron
Altschul[77] 2009 \scriptstyle \leq5\times10^{-15} Electron Terr.
Hohensee et al.[76] 2009 \scriptstyle \leq-5.8\times10^{-12} \scriptstyle \leq1.2\times10^{-11} Electron Terr.
Klinkhamer & Schreck[78] 2008 \scriptstyle \leq-9\times10^{-16} \scriptstyle \leq6\times10^{-20} UHECR Astr.
Klinkhamer & Risse[79] 2007 \scriptstyle \leq2\times10^{-19} UHECR Astr.
Kaufhold et al.[80] 2007 \scriptstyle \leq10^{-17} UHECR Astr.
Altschul[81] 2005 \scriptstyle \leq6\times10^{-20} Electron Astr.
Gagnon et al.[82] 2004 \scriptstyle \leq-2\times10^{-21} \scriptstyle \leq5\times10^{-24} UHECR Astr.
Jacobson et al.[83] 2003 \scriptstyle \leq-2\times10^{-16} \scriptstyle \leq5\times10^{-20} Electron Astr.
Coleman & Glashow[84] 1997 \scriptstyle \leq-1.5\times10^{-15} \scriptstyle \leq5\times10^{-23} UHECR Astr.

Neutrino tests

Neutrino oscillations

Although neutrino oscillations have been experimentally confirmed, the theoretical foundations are still controversial, as it can be seen in the discussion related to sterile neutrinos. This makes predictions of possible Lorentz violations very complicated. However, some succeeded in deriving a possible scenario for neutrino Lorentz violations, such as the EFT of Sidney Coleman & Sheldon Lee Glashow,[84] or SME[85]. It is generally assumed that Neutrino oscillations require a certain finite mass. However, oscillations could also occur as a consequence of Lorentz violations, so there are speculations as to how much those violations contribute to the mass of the neutrinos.

Additionally, a series of investigations was published, in which a sidereal dependence of the occurrence of neutrino oscillations was tested, which could arise when there were a preferred background field. This, possible CPT violations, and other coefficients of Lorentz violations in the framework of SME, have been tested. Here, some of the achieved GeV bounds for the validity of Lorentz invariance are stated:

Name Year SME bounds
in GeV
MiniBooNE[86] 2011 \scriptstyle \leq10^{-20}
IceCube[87] 2010 \scriptstyle \leq10^{-23}
MINOS[88] 2010 \scriptstyle \leq10^{-23}
MINOS[89] 2008 \scriptstyle \leq10^{-20}
LSND[90] 2005 \scriptstyle \leq10^{-19}

Neutrino speed

It was thought for a long time in accordance with the standard model, that neutrinos are massless and thus traveling at the speed of light. However, since the discovery of neutrino oscillations, neutrinos are considered as having a certain mass, and thus their speed should be less than the speed of light. Some non-standard models also predict faster than light speeds, for instance, in models where the neutrinos are assumed to be tachyons, or in Lorentz violating models with modified dispersion relations, or models in which neutrinos take "shortcuts" through extra dimensions.

First time of flight measurements were made in the 1970s, and the observed interactions of 25-GeV muon neutrino gave (v-c)/c < 4\times10^{-5} as maximal deviation from the speed of light.[91][92] A much higher agreement with the speed of light was achieved in the course of observations of 10-MeV neutrinos coming from SN 1987A, giving bounds of (v-c)/c < 2\times10^{-9}.[93][94] A measurement of the absolute transit time over a distance of 734 km was carried out by MINOS (2007). They determined the speed of 3-GeV neutrinos as being 1,000051(29) c, so they apparently traveled with superluminal speeds, with a deviation from the speed of light of (v-c)/c = (5.1\pm2.9)2\times10^{-5}. However, the standard deviation was only 1.8σ, clearly below the 5σ-limit necessary for a significant result. Thus, as argued by the MINOS-group,[95] the deviation is not significant and is also consistent with the speed of light. For the alleged measurement of superluminal neutrinos, see section OPERA below.

Another possible consequence of Lorentz violation could be the occurrence of velocity differences between neutrino flavors. A comparison between muon- and electron-neutrinos by Coleman & Glashow (1998) gave a negative result, with bounds <6\times10^{-22}.[84]

Reports of alleged Lorentz violations


In 2011, the OPERA Collaboration published (in a non-peer reviewed arXiv preprint) the results of neutrino measurements, according to which neutrinos are traveling faster than light.[96] Traversing a distance of 730 km, the neutrinos arrived early by 60.7\pm6.9\pm7.4 ns. The relative difference to the speed of light was (v-c)/c=(2.48\pm0.28\pm0.3)\times10^{-5}, corresponding to ∼7.44 km/s. The standard deviation was 6σ, so unlike the MINOS experiment the result is clearly beyond the 5σ limit necessary for a significant result. They also reported that no significant energy dependence (between 13.9 and 42.9 GeV) of neutrino speeds was measured. They argued that earlier experiments were executed with much lower neutrino energies (see Neutrino speed above). Eventually, they stress that they don't want to draw far reaching conclusions from their experiment, and await further research by the scientific community. Fermilab has announced to repeat the MINOS experiment in the next months to check the OPERA result.[95] Also a series of arXiv preprints[97] concerning this subject have been published.[98]


In 2007, the MAGIC Collaboration published a paper, in which they claimed a possible energy dependence of the speed of photons from the galaxy Markarian 501. They admitted, that also a possible energy dependent emission effect could have cause this result as well.[50][99] However, the MAGIC result was superseded by the substantially more precise measurements of the Fermi-LAT group, which couldn't find any effect even beyond the Planck energy.[48] For details, see section Dispersion.

Nodland & Ralston

In 1997, Nodland & Ralston claimed to have found a rotation of the polarization plane of light coming from distant radio galaxies. This would indicate an anisotropy of space.[100][101][102] This attracted some interest in the media. However, some criticisms immediately appeared, which disputed the interpretation of the data, and who alluded to errors in the publication.[103][104][105][106][107][108][109] More recent researches also haven't found any evidence for this effect, see section Birefringence.

See also


  1. ^ Mattingly, David (2005). "Modern Tests of Lorentz Invariance". Living Rev. Relativity 8 (5). 
  2. ^ a b Kostelecky, V.A.; Russell, N. (2011). "Data tables for Lorentz and CPT violation". Reviews of Modern Physics 83 (1): 11–31. arXiv:0801.0287. Bibcode 2011RvMP...83...11K. doi:10.1103/RevModPhys.83.11. 
  3. ^ Herrmann et al. (2009). "Rotating optical cavity experiment testing Lorentz invariance at the 10-17 level". Physical Review D 80 (100): 105011. arXiv:1002.1284. Bibcode 2009PhRvD..80j5011H. doi:10.1103/PhysRevD.80.105011. 
  4. ^ Eisele et al. (2009). "Laboratory Test of the Isotropy of Light Propagation at the 10-17 level". Physical Review Letters 103 (9): 090401. Bibcode 2009PhRvL.103i0401E. doi:10.1103/PhysRevLett.103.090401. PMID 19792767. 
  5. ^ Müller et al. (2007). "Relativity tests by complementary rotating Michelson-Morley experiments". Phys. Rev. Lett. 99 (5): 050401. arXiv:0706.2031. Bibcode 2007PhRvL..99e0401M. doi:10.1103/PhysRevLett.99.050401. PMID 17930733. 
  6. ^ Stanwix et al. (2006). "Improved test of Lorentz invariance in electrodynamics using rotating cryogenic sapphire oscillators". Physical Review D 74 (8): 081101. arXiv:gr-qc/0609072. Bibcode 2006PhRvD..74h1101S. doi:10.1103/PhysRevD.74.081101. 
  7. ^ Herrmann et al. (2005). "Test of the Isotropy of the Speed of Light Using a Continuously Rotating Optical Resonator". Phys. Rev. Lett. 95 (15): 150401. arXiv:physics/0508097. Bibcode 2005PhRvL..95o0401H. doi:10.1103/PhysRevLett.95.150401. PMID 16241700. 
  8. ^ Stanwix et al. (2005). "Test of Lorentz Invariance in Electrodynamics Using Rotating Cryogenic Sapphire Microwave Oscillators". Physical Review Letters 95 (4): 040404. arXiv:hep-ph/0506074. Bibcode 2005PhRvL..95d0404S. doi:10.1103/PhysRevLett.95.040404. PMID 16090785. 
  9. ^ Antonini et al. (2005). "Test of constancy of speed of light with rotating cryogenic optical resonators". Physical Review A 71 (5): 050101. arXiv:gr-qc/0504109. Bibcode 2005PhRvA..71e0101A. doi:10.1103/PhysRevA.71.050101. 
  10. ^ Wolf et al. (2004). "Improved test of Lorentz invariance in electrodynamics". Physical Review D 70 (5): 051902. arXiv:hep-ph/0407232. Bibcode 2004PhRvD..70e1902W. doi:10.1103/PhysRevD.70.051902. 
  11. ^ Wolf et al. (2004). "Whispering Gallery Resonators and Tests of Lorentz Invariance". General Relativity and Gravitation 36 (10): 2351–2372. arXiv:gr-qc/0401017. Bibcode 2004GReGr..36.2351W. doi:10.1023/B:GERG.0000046188.87741.51. 
  12. ^ Müller et al. (2003). "Modern Michelson-Morley experiment using cryogenic optical resonators". Phys. Rev. Lett. 91 (2): 020401. arXiv:physics/0305117. Bibcode 2003PhRvL..91b0401M. doi:10.1103/PhysRevLett.91.020401. PMID 12906465. 
  13. ^ Wolf et al. (2003). "New Limit on Signals of Lorentz Violation in Electrodynamics". Phys. Rev. Lett. 90 (6): 060402. arXiv:gr-qc/0210049. Bibcode 2003PhRvL..90f0402W. doi:10.1103/PhysRevLett.90.060402. PMID 12633279. 
  14. ^ Brillet, A.; Hall, J. L. (1979). "Improved laser test of the isotropy of space". Phys. Rev. Lett. 42 (9): 549–552. Bibcode 1979PhRvL..42..549B. doi:10.1103/PhysRevLett.42.549. 
  15. ^ Tobar et al. (2009). "Testing local Lorentz and position invariance and variation of fundamental constants by searching the derivative of the comparison frequency between a cryogenic sapphire oscillator and hydrogen maser". Physical Review D 81 (2): 022003. arXiv:0912.2803. Bibcode 2010PhRvD..81b2003T. doi:10.1103/PhysRevD.81.022003. 
  16. ^ Wolf et al. (2004). "Whispering Gallery Resonators and Tests of Lorentz Invariance". General Relativity and Gravitation 36 (10): 2351–2372. arXiv:gr-qc/0401017. Bibcode 2004GReGr..36.2351W. doi:10.1023/B:GERG.0000046188.87741.51. 
  17. ^ Braxmaier et al. (2002). "Tests of Relativity Using a Cryogenic Optical Resonator". Phys. Rev. Lett. 88 (1): 010401. Bibcode 2002PhRvL..88a0401B. doi:10.1103/PhysRevLett.88.010401. PMID 11800924. 
  18. ^ Hils, Dieter; Hall, J. L. (1990). "Improved Kennedy-Thorndike experiment to test special relativity". Phys. Rev. Lett. 64 (15): 1697–1700. Bibcode 1990PhRvL..64.1697H. doi:10.1103/PhysRevLett.64.1697. PMID 10041466. 
  19. ^ Chou et al. (2010). "Optical Clocks and Relativity". Science 329 (5999): 1630–1633. Bibcode 2010Sci...329.1630C. doi:10.1126/science.1192720. 
  20. ^ Novotny, C. et al. (2009). "Sub-Doppler laser spectroscopy on relativistic beams and tests of Lorentz invariance". Physical Review A 80 (2): 022107. doi:10.1103/PhysRevA.80.022107. 
  21. ^ Reinhardt et al. (2007). "Test of relativistic time dilation with fast optical atomic clocks at different velocities". Nature Physics 3 (12): 861–864. Bibcode 2007NatPh...3..861R. doi:10.1038/nphys778. 
  22. ^ Saathoff et al. (2003). "Improved Test of Time Dilation in Special Relativity". Phys. Rev. Lett. 91 (19): 190403. Bibcode 2003PhRvL..91s0403S. doi:10.1103/PhysRevLett.91.190403. 
  23. ^ Grieser et al. (1994). "A test of special relativity with stored lithium ions". Applied Physics B Lasers and Optics 59 (2): 127–133. doi:10.1007/BF01081163. 
  24. ^ M. Smiciklas et al. (2011). "New Test of Local Lorentz Invariance Using a 21Ne-Rb-K Comagnetometer". Physical Review Letters 107 (17): 171604. arXiv:1106.0738. doi:10.1103/PhysRevLett.107.171604. 
  25. ^ Gemmel et al. (2010). "Limit on Lorentz and CPT violation of the bound neutron using a free precession He3/Xe129 comagnetometer". Physical Review D 82 (11): 111901. arXiv:1011.2143. doi:10.1103/PhysRevD.82.111901. 
  26. ^ Brown et al. (2010). "New Limit on Lorentz- and CPT-Violating Neutron Spin Interactions". Physical Review Letters 105 (15): 151604. arXiv:1006.5425. doi:10.1103/PhysRevLett.105.151604. 
  27. ^ Altarev, I. et al. (2009). "Test of Lorentz Invariance with Spin Precession of Ultracold Neutrons". Physical Review Letters 103 (8): 081602. arXiv:0905.3221. doi:10.1103/PhysRevLett.103.081602. 
  28. ^ Wolf et al. (2006). "Cold Atom Clock Test of Lorentz Invariance in the Matter Sector". Physical Review Letters 96 (6): 060801. arXiv:hep-ph/0601024. doi:10.1103/PhysRevLett.96.060801. 
  29. ^ Canè et al. (2004). "Bound on Lorentz and CPT Violating Boost Effects for the Neutron". Physical Review Letters 93 (23): 230801. arXiv:physics/0309070. doi:10.1103/PhysRevLett.93.230801. 
  30. ^ a b Humphrey et al. (2003). "Testing CPT and Lorentz symmetry with hydrogen masers". Physical Review A 68 (6): 063807. arXiv:physics/0103068. doi:10.1103/PhysRevA.68.063807. 
  31. ^ Walsworth et al. (2000). "New clock comparison searches for Lorentz and CPT violation". AIP Conference Proceedings 539: 119–129. arXiv:physics/0007063. doi:10.1063/1.1330910. 
  32. ^ Bear et al. (2000). "Limit on Lorentz and CPT Violation of the Neutron Using a Two-Species Noble-Gas Maser". Physical Review Letters 85 (24): 5038–5041. arXiv:physics/0007049. doi:10.1103/PhysRevLett.85.5038. 
  33. ^ a b Berglund et al. (1995). "New Limits on Local Lorentz Invariance from Hg and Cs Magnetometers". Physical Review Letters 75 (10): 1879–1882. doi:10.1103/PhysRevLett.75.1879. 
  34. ^ Chupp et al. (1989). "Results of a new test of local Lorentz invariance: A search for mass anisotropy in 21Ne". Physical Review Letters 63 (15): 1541–1545. doi:10.1103/PhysRevLett.63.1541. 
  35. ^ Lamoreaux et al. (1989). "Optical pumping technique for measuring small nuclear quadrupole shifts in 1S(0) atoms and testing spatial isotropy". Physical Review A 39: 1082–1111. doi:10.1103/PhysRevA.39.1082. 
  36. ^ Prestage et al. (1985). "Limits for spatial anisotropy by use of nuclear-spin-polarized Be-9(+) ions". Physical Review Letters 54: 2387–2390. doi:10.1103/PhysRevLett.54.2387. 
  37. ^ Heckel et al. (2008). "Preferred-frame and CP-violation tests with polarized electrons". Physical Review D 78 (9): 092006. arXiv:0808.2673. doi:10.1103/PhysRevD.78.092006. 
  38. ^ Heckel et al. (2006). "New CP-Violation and Preferred-Frame Tests with Polarized Electrons". Physical Review Letters 97 (2): 021603. arXiv:hep-ph/0606218. doi:10.1103/PhysRevLett.97.021603. 
  39. ^ Hou et al. (2003). "Test of Cosmic Spatial Isotropy for Polarized Electrons Using a Rotatable Torsion Balance". Physical Review Letters 90 (20): 201101. arXiv:physics/0009012. doi:10.1103/PhysRevLett.90.201101. 
  40. ^ Phillips et al. (2000). "Limit on Lorentz and CPT violation of the proton using a hydrogen maser". Physical Review D 63 (11): 111101. arXiv:physics/0008230. doi:10.1103/PhysRevD.63.111101. 
  41. ^ Wang et al. (1993). "New Experimental Limit on the Spatial Anisotropy for Polarized Electrons". Modern Physics Letters A 8 (39): 3715–3725. doi:10.1142/S0217732393003445. 
  42. ^ Wineland et al. (1991). "Search for anomalous spin-dependent forces using stored-ion spectroscopy". Physical Review Letters 67 (13): 1735–1738. doi:10.1103/PhysRevLett.67.1735. 
  43. ^ Phillips, P. R. (1987). "Test of spatial isotropy using a cryogenic torsion pendulum". Physical Review Letter 59 (5): 1784–1787. doi:10.1103/PhysRevLett.59.1784. 
  44. ^ Gabrielse et al. (1999). "Precision Mass Spectroscopy of the Antiproton and Proton Using Simultaneously Trapped Particles". Physical Review Letters 82 (16): 3198–3201. doi:10.1103/PhysRevLett.82.3198. 
  45. ^ Dehmelt et al. (1999). "Past Electron-Positron g-2 Experiments Yielded Sharpest Bound on CPT Violation for Point Particles". Physical Review Letters 83 (23): 4694–4696. arXiv:hep-ph/9906262. doi:10.1103/PhysRevLett.83.4694. 
  46. ^ Hughes et al. (2001). "Test of CPT and Lorentz Invariance from Muonium Spectroscopy". Physical Review Letters 87 (11): 111804. arXiv:hep-ex/0106103. doi:10.1103/PhysRevLett.87.111804. 
  47. ^ Bennett et al. (2008). "Search for Lorentz and CPT Violation Effects in Muon Spin Precession". Physical Review Letters 100 (9): 091602. arXiv:0709.4670. doi:10.1103/PhysRevLett.100.091602. 
  48. ^ a b c Fermi LAT Collaboration (2009). "A limit on the variation of the speed of light arising from quantum gravity effects". Nature 462 (7271): 331–334. arXiv:0908.1832. doi:10.1038/nature08574. 
  49. ^ HESS Collaboration (2008). "Limits on an Energy Dependence of the Speed of Light from a Flare of the Active Galaxy PKS 2155-304". Physics Letters B 101 (17): 170402. arXiv:0810.3475. doi:10.1103/PhysRevLett.101.170402. 
  50. ^ a b MAGIC Collaboration (2008). "Probing quantum gravity using photons from a flare of the active galactic nucleus Markarian 501 observed by the MAGIC telescope". Physics Letters B 668 (4): 253–257. arXiv:0708.2889. doi:10.1016/j.physletb.2008.08.053. 
  51. ^ Lamon et al. (2008). "Study of Lorentz violation in INTEGRAL gamma-ray bursts". General Relativity and Gravitation 40 (8): 1731–1743. arXiv:0706.4039. doi:10.1007/s10714-007-0580-6. 
  52. ^ Rodríguez Martínez et al. (2006). "GRB 051221A and tests of Lorentz symmetry". Journal of Cosmology and Astroparticle Physics (5): 017. arXiv:astro-ph/0601556. doi:10.1088/1475-7516/2006/05/017. 
  53. ^ Ellis et al. (2006). "Robust limits on Lorentz violation from gamma-ray bursts". Astroparticle Physics 25 (6): 402–411. arXiv:astro-ph/0510172. doi:10.1016/j.astropartphys.2006.04.001. 
  54. ^ Ellis et al. (2008). "Corrigendum to "Robust limits on Lorentz violation from gamma-ray bursts"". Astroparticle Physics 29 (2): 158–159. arXiv:0712.2781. doi:10.1016/j.astropartphys.2007.12.003. 
  55. ^ Boggs et al. (2004). "Testing Lorentz Invariance with GRB021206". The Astrophysical Journal 611 (2): L77-L80. arXiv:astro-ph/0310307. doi:10.1086/423933. 
  56. ^ Ellis et al. (2003). "Quantum-gravity analysis of gamma-ray bursts using wavelets". Astronomy and Astrophysics 402: 409–424. arXiv:astro-ph/0210124. doi:10.1051/0004-6361:20030263. 
  57. ^ Ellis et al. (2000). "A Search in Gamma-Ray Burst Data for Nonconstancy of the Velocity of Light". The Astrophysical Journal 535 (1): 139–151. arXiv:astro-ph/9907340. doi:10.1086/308825. 
  58. ^ Schaefer, Bradley E. (1999). "Severe Limits on Variations of the Speed of Light with Frequency". Physical Review Letters 82 (25): 4964–4966. arXiv:astro-ph/9810479. doi:10.1103/PhysRevLett.83.2108. 
  59. ^ Biller et al. (1999). "Limits to Quantum Gravity Effects on Energy Dependence of the Speed of Light from Observations of TeV Flares in Active Galaxies". Physical Review Letters 83 (11): 2108–2111. arXiv:gr-qc/9810044. doi:10.1103/PhysRevLett.83.2108. 
  60. ^ Kaaret, Philip (1999). "Pulsar radiation and quantum gravity". Astronomy and Astrophysics 345: L32-L34. arXiv:astro-ph/9903464. 
  61. ^ a b Stecker, Floyd W. (2011). "A new limit on Planck scale Lorentz violation from γ-ray burst polarization". Astroparticle Physics 35 (2): 95–97. arXiv:1102.2784. doi:10.1016/j.astropartphys.2011.06.007. 
  62. ^ Laurent et al. (2011). "Constraints on Lorentz Invariance Violation using integral/IBIS observations of GRB041219A". Physical Review D 83 (12): 121301. arXiv:1106.1068. doi:10.1103/PhysRevD.83.121301. 
  63. ^ Kostelecký, V. Alan; Mewes, Matthew (2009). "Electrodynamics with Lorentz-violating operators of arbitrary dimension". Physical Review D 80 (1): 015020. arXiv:0905.0031. doi:10.1103/PhysRevD.80.015020. 
  64. ^ QUaD Collaboration (2008). "Parity Violation Constraints Using Cosmic Microwave Background Polarization Spectra from 2006 and 2007 Observations by the QUaD Polarimeter". Physical Review Letters 102 (16): 161302. arXiv:0811.0618. doi:10.1103/PhysRevLett.102.161302. 
  65. ^ Kostelecký, V. Alan; Mewes, Matthew (2008). "Astrophysical Tests of Lorentz and CPT Violation with Photons". The Astrophysical Journal 689 (1): L1-L4. arXiv:0809.2846. doi:10.1086/595815. 
  66. ^ Maccione et al. (2008). "γ-ray polarization constraints on Planck scale violations of special relativity". Physical Review D 78 (10): 103003. arXiv:0809.0220. doi:10.1103/PhysRevD.78.103003. 
  67. ^ Komatsu et al. (2009). "Five-Year Wilkinson Microwave Anisotropy Probe Observations: Cosmological Interpretation". The Astrophysical Journal Supplement 180 (2): 330–376. arXiv:0803.0547. doi:10.1088/0067-0049/180/2/330. 
  68. ^ Kahniashvili et al. (2008). "Testing Lorentz invariance violation with Wilkinson Microwave Anisotropy Probe five year data". Physical Review D 78 (12): 123009. arXiv:0807.2593. doi:10.1103/PhysRevD.78.123009. 
  69. ^ Xia et al. (2008). "Testing CPT Symmetry with CMB Measurements: Update after WMAP5". The Astrophysical Journal 679 (2): L61-L63. arXiv:0803.2350. doi:10.1086/589447. 
  70. ^ Cabella et al. (2007). "Constraints on CPT violation from Wilkinson Microwave Anisotropy Probe three year polarization data: A wavelet analysis". Physical Review D 76 (12): 123014. arXiv:0705.0810. doi:10.1103/PhysRevD.76.123014. 
  71. ^ Fan et al. (2007). "γ-ray burst ultraviolet/optical afterglow polarimetry as a probe of quantum gravity". Monthly Notices of the Royal Astronomical Society 376 (4): 1857–1860. arXiv:astro-ph/0702006. doi:10.1111/j.1365-2966.2007.11576.x. 
  72. ^ Feng et al. (2006). "Searching for CPT Violation with Cosmic Microwave Background Data from WMAP and BOOMERANG". Physical Review Letters 96 (22): 221302. arXiv:astro-ph/0601095. doi:10.1103/PhysRevLett.96.221302. 
  73. ^ Gleiser, Reinaldo J.; Kozameh, Carlos N. (2001). "Astrophysical limits on quantum gravity motivated birefringence". Physical Review D 64 (8): 083007. arXiv:gr-qc/0102093. doi:10.1103/PhysRevD.64.083007. 
  74. ^ Carroll et al. (1990). "Limits on a Lorentz- and parity-violating modification of electrodynamics". Physical Review D 41 (4): 1231–1240. doi:10.1103/PhysRevD.41.1231. 
  75. ^ Jacobson et al. (2002). "Threshold effects and Planck scale Lorentz violation: Combined constraints from high energy astrophysics". Physical Review D 67 (12): 124011. arXiv:hep-ph/0209264. doi:10.1103/PhysRevD.67.124011. 
  76. ^ a b Hohensee et al. (2009). "Particle-Accelerator Constraints on Isotropic Modifications of the Speed of Light". Physical Review Letters 102 (17): 170402. arXiv:0904.2031. doi:10.1103/PhysRevLett.102.170402. 
  77. ^ Altschul, Brett (2009). "Bounding isotropic Lorentz violation using synchrotron losses at LEP". Physical Review D 80 (9): 091901. arXiv:0905.4346. doi:10.1103/PhysRevD.80.091901. 
  78. ^ Klinkhamer, F. R.; Schreck, M. (2008). "New two-sided bound on the isotropic Lorentz-violating parameter of modified Maxwell theory". Physical Review D 78 (8): 085026. arXiv:0809.3217. doi:10.1103/PhysRevD.78.085026. 
  79. ^ Klinkhamer, F. R.; Risse, M. (2007). "Ultrahigh-energy cosmic-ray bounds on nonbirefringent modified Maxwell theory". Physical Review D 77 (1): 016002. arXiv:0709.2502. doi:10.1103/PhysRevD.77.016002. 
  80. ^ Kaufhold, C.; Klinkhamer, F. R. (2007). "Vacuum Cherenkov radiation in spacelike Maxwell-Chern-Simons theory". Physical Review D 76 (2): 025024. arXiv:0704.3255. doi:10.1103/PhysRevD.76.025024. 
  81. ^ Altschul, Brett (2005). "Lorentz violation and synchrotron radiation". Physical Review D 72 (8): 085003. arXiv:hep-th/0507258. doi:10.1103/PhysRevD.72.085003. 
  82. ^ Gagnon, Olivier; Moore, Guy D. (2004). "Limits on Lorentz violation from the highest energy cosmic rays". Physical Review D 70 (6): 065002. arXiv:hep-ph/0404196. doi:10.1103/PhysRevD.70.065002. 
  83. ^ Jacobson et al. (2003). "New Limits on Planck Scale Lorentz Violation in QED". Physical Review Letters 93 (2): 021101. arXiv:astro-ph/0309681. doi:10.1103/PhysRevLett.93.021101. 
  84. ^ a b c Coleman, Sidney; Glashow, Sheldon L. (1998). "High-energy tests of Lorentz invariance". Physical Review D 59 (11): 116008. arXiv:hep-ph/9812418. doi:10.1103/PhysRevD.59.116008. 
  85. ^ Jorge S. Diaz, Alan Kostelecky (2011), Lorentz- and CPT-violating models for neutrino oscillations, arXiv:1108.1799.
  86. ^ MiniBooNE Collaboration (2011). Test of Lorentz and CPT violation with Short Baseline Neutrino Oscillation Excesses. arXiv:1109.3480. 
  87. ^ IceCube Collaboration (2010). "Search for a Lorentz-violating sidereal signal with atmospheric neutrinos in IceCube". Physical Review D 82 (11): 112003. arXiv:1010.4096. doi:10.1103/PhysRevD.82.112003. 
  88. ^ Adamson, et al. (2010). "Search for Lorentz Invariance and CPT Violation with the MINOS Far Detector". Physical Review Letters 105 (15): 151601. arXiv:1007.2791. doi:10.1103/PhysRevLett.105.151601. 
  89. ^ Adamson, et al. (2008). "Testing Lorentz Invariance and CPT Conservation with NuMI Neutrinos in the MINOS Near Detector". Physical Review Letters 101 (15): 151601. arXiv:0806.4945. doi:10.1103/PhysRevLett.101.151601. 
  90. ^ Auerbach, et al. (2005). "Tests of Lorentz violation in ν¯μ→ν¯e oscillations". Physical Review D 72 (7): 076004. arXiv:hep-ex/0506067. doi:10.1103/PhysRevD.72.076004. 
  91. ^ P. Alspector et al. (1976). "Experimental Comparison of Neutrino and Muon Velocities". Physical Review Letters 36 (15): 837–840. doi:10.1103/PhysRevLett.36.837. 
  92. ^ Kalbfleisch et al. (1979). "Experimental Comparison of Neutrino, Antineutrino, and Muon Velocities". Physical Review Letters 43 (19): 1361–1364. doi:10.1103/PhysRevLett.43.1361. 
  93. ^ Hirata et al. (1987). "Observation of a neutrino burst from the supernova SN1987A". Physical Review Letters 58: 1490–1493. doi:10.1103/PhysRevLett.58.1490. 
  94. ^ Bionta et al. (1987). "Observation of a neutrino burst in coincidence with supernova 1987A in the Large Magellanic Cloud". Physical Review Letters 58: 1494–1496. doi:10.1103/PhysRevLett.58.1494. 
  95. ^ a b "OPERA experiment reports anomaly in flight time of neutrinos". Fermilab today. 23 September 2011. Retrieved 25 September 2011. 
  96. ^ OPERA Collaboraton (2011): Measurement of the neutrino velocity with the OPERA detector in the CNGS beam, arXiv:1109.4897
  97. ^ "Papers Discussing the OPERA result at". Retrieved 15 October 2011. 
  98. ^ Charles Q. Choi (13 October 2011). "Leading Light: What Would Faster-Than-Light Neutrinos Mean for Physics?". Scientific American. Retrieved 15 October 2011. 
  99. ^ George Musser (22 August 2007). "Hints of a breakdown of relativity theory?". Scientific American. Retrieved 15 October 2011. 
  100. ^ Nodland, Borge; Ralston, John P. (1997). "Indication of Anisotropy in Electromagnetic Propagation over Cosmological Distances". Physical Review Letters 78 (16): 3043–3046. arXiv:astro-ph/9704196. doi:10.1103/PhysRevLett.78.3043. 
  101. ^ Nodland, Borge; Ralston, John P. (1997). "Nodland and Ralston Reply:". Physical Review Letters 79 (10): 1958. arXiv:astro-ph/9705190. doi:10.1103/PhysRevLett.79.1958. 
  102. ^ Borge Nodland, John P. Ralston (1997), Response to Leahy's Comment on the Data's Indication of Cosmological Birefringence, arXiv:astro-ph/9706126
  103. ^ J.P. Leahy:
  104. ^ Ted Bunn:
  105. ^ Eisenstein, Daniel J.; Bunn, Emory F. (1997). "Appropriate Null Hypothesis for Cosmological Birefringence". Physical Review Letters 79 (10): 1957. arXiv:astro-ph/9704247. doi:10.1103/PhysRevLett.79.1957. 
  106. ^ Carroll, Sean M.; Field, George B. (1997). "Is There Evidence for Cosmic Anisotropy in the Polarization of Distant Radio Sources?". Physical Review Letters 79 (13): 2394–2397. arXiv:astro-ph/9704263. doi:10.1103/PhysRevLett.79.2394. 
  107. ^ J. P. Leahy: (1997) Comment on the Measurement of Cosmological Birefringence, arXiv:astro-ph/9704285
  108. ^ Wardle et al. (1997). "Observational Evidence against Birefringence over Cosmological Distances". Physical Review Letters 79 (10): 1801–1804. arXiv:astro-ph/9705142. doi:10.1103/PhysRevLett.79.1801. 
  109. ^ Loredo et al. (1997). "Bayesian analysis of the polarization of distant radio sources: Limits on cosmological birefringence". Physical Review D 56 (12): 7507–7512. arXiv:astro-ph/9706258. doi:10.1103/PhysRevD.56.7507. 

Wikimedia Foundation. 2010.

Look at other dictionaries:

  • Hughes–Drever experiment — Hughes–Drever experiments (also clock comparison , clock anisotropy , mass isotropy , or energy isotropy experiments) are testing the isotropy of mass and space. As in Michelson–Morley experiments, the existence of a preferred frame of reference …   Wikipedia

  • Michelson–Morley experiment — Box plots based on data from the Michelson–Morley experiment The Michelson–Morley experiment was performed in 1887 by Albert Michelson and Edward Morley at what is now Case Western Reserve University in Cleveland, Ohio. Its results are generally… …   Wikipedia

  • Luminiferous aether — The luminiferous aether: it was hypothesised that the Earth moves through a medium of aether that carries light In the late 19th century, luminiferous aether or ether, meaning light bearing aether, was the term used to describe a medium for the… …   Wikipedia

  • Doubly special relativity — (DSR) also called deformed special relativity or, by some, extra special relativity is a modified theory of special relativity in which there is not only an observer independent maximum velocity (the speed of light), but an observer independent… …   Wikipedia

  • One-way speed of light — The one way speed of light from a source to a detector, cannot be measured independently of a convention as to how to synchronize the clocks at the source and the detector. What can however be experimentally measured is the round trip speed (or… …   Wikipedia

  • De Sitter double star experiment — This article is about observing binary stars. For precession of orbiting bodies, see de Sitter precession. de Sitter s double star argument The de Sitter effect was described by de Sitter in 1913 and used to support the special theory of… …   Wikipedia

  • Michelson–Gale–Pearson experiment — The Michelson–Gale–Pearson experiment (1925) is a modified version of the Michelson Morley experiment and the Sagnac Interferometer. It measured the Sagnac effect due to Earth s rotation, and thus tests the theories of special relativity and… …   Wikipedia

  • Moderne Tests der Lorentzinvarianz — dienen zur Überprüfung der grundlegenden Aussagen der speziellen Relativitätstheorie bzw. des Äquivalenzprinzips der allgemeinen Relativitätstheorie. Eine wesentliche Motivation dieser Experimente sind mögliche Verletzungen der Lorentzinvarianz,… …   Deutsch Wikipedia

  • Hughes-Drever-Experiment — Hughes Drever Experimente (auch Uhrenvergleichs , Uhrenanisotropie , Massenisotropie , oder Energieisotropie Experimente) werden zur Überprüfung der Isotropie der Masse bzw. des Raumes eingesetzt. Diese Experimente testen grundlegende Aussagen… …   Deutsch Wikipedia

  • Neutrino — For other uses, see Neutrino (disambiguation). Neutrino/Antineutrino The first use of a hydrogen bubble chamber to detect neutrinos, on November 13, 1970. A neutrino hit a proton in a hydrogen atom. The collision occurred at the point where three …   Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”