- Mogollon-Datil volcanic field
-
Mogollon-Datil volcanic field Location Location New Mexico, USA Coordinates 33°30′N 108°00′W / 33.5°N 108°WCoordinates: 33°30′N 108°00′W / 33.5°N 108°W Geology Type Volcanic field Age of rock Middle Tertiary[1] The Mogollon-Datil volcanic field is a large silicic volcanic field in western New Mexico (Mogollon Mountains-Datil, New Mexico). It is a part of an extensive Eocene to Oligocene volcanic event which includes the San Juan volcanic field in southwestern Colorado, the Trans-Pecos volcanic field in west Texas and north central Mexico, the Boot Heel volcanic field in the bootheel of southwestern New Mexico and adjacent areas of Arizona and Mexico; and the vast volcanic field of the Sierra Madre Occidental of western Mexico.[2] The Mogollon-Datil volcanic field was formed in "four discrete pulses representing synchronized activity of two separate cauldron complexes".[3]
The Socorro, New Mexico region (Socorro-Magdalena caldera cluster) of the central Rio Grande rift hosts an inflating mid-crustal sill-like magma body at a depth of 19 km that is responsible for anomalously high earthquake activity in the vicinity.[4][5][6] Earth and space-based geodetic measurements indicate ongoing surface uplift above the Socorro Magma Body at approximately 2 mm/year.[7]
Contents
Formations
The Datil Group,[8] or series of volcanic and related formations (formerly the Datil Formation[9]) in New Mexico and eastern Arizona represents the extrusive output from the Mogollon-Datil volcanic field.[10] Originally the Baca Formation was included in the group,[11] but now the group is considered to start with the Spears Formation.[10] The base of the group, as originally defined, rests unconformably on the Mesaverde Formation, and the series is succeeded by the Popotosa Formation of the Santa Fe Group. The series consists of the following formations:[9]
- Baca Formation, primarily fluvial red shales and sandstones of the Eocene,[9] no longer considered part of the group;[12]
- Spears Formation, latitic to andesitic conglomerates, mudflow deposits and thin, interbedded volcanic clastics and sandstones, followed by andesite flows interbedded with some conglomerates and mudflow deposits,[13] approximately 37 Ma;
- Hells Mesa Tuff, over 2000 ft thick consisting of ash layers that erupted about 32.1 Ma, rhyolitic tuff with interbedded mudflow deposits and basalts;
- A-L Peak Tuff
- La Jara'Peak Basaltic Andesite
Notable Calderas
Northern complex
Socorro-Magdalena caldera cluster
Location: West of Socorro, South of Magdalena, and Southeast of Datil.[14]
Name Elevation Coordinates Age Socorro Caldera - 34°00′N 107°06′W / 34°N 107.1°W[15] 32 Ma Sawmill Canyon Caldera - 34°00′N 107°18′W / 34°N 107.3°W[15] 28.7 Ma Hardy Ridge Caldera - 33°54′N 107°18′W / 33.9°N 107.3°W[15] 28 Ma Mount Withington Caldera - 33°48′N 107°30′W / 33.8°N 107.5°W[15] 27.4 Ma Bear Trap Caldera - 33°45′N 107°36′W / 33.75°N 107.6°W[15] 24.3 Ma Southern complex
Located from Las Cruces to Mogollon:
Name Elevation Coordinates Age Nogal Caldera - 33°36′N 107°24′W / 33.6°N 107.4°W[15] 28.4 Ma Organ Caldera - 32°30′N 106°45′W / 32.5°N 106.75°W[16] 32 Ma Emory Caldera - 33°00′N 107°45′W / 33°N 107.75°W[16] 33 Ma Twin Sisters Caldera - 33°00′N 108°15′W / 33°N 108.25°W[16] 31.4 Ma Schoolhouse Mountain Caldera - 32°45′N 108°36′W / 32.75°N 108.6°W[16] 33.5 Ma Mogollon Caldera
(just one fragment in the Bursum Caldera wall)- 33°30′N 108°30′W / 33.5°N 108.5°W[16] 34.0 Ma Bursum Caldera - 33°30′N 108°30′W / 33.5°N 108.5°W[16] 28.0 Ma Gila Cliff Dwellings Caldera - 33°30′N 108°15′W / 33.5°N 108.25°W[16] 28.1 Ma Note: the ages given in Chapin et al. (2004) and Ward (2009) do not match sometimes.[16][17]
See also
Notes
- ^ Chapin, C.E.; Wilks, M. and McIntosh, W.C. (2004). "Space-time patterns of Late Cretaceous to present magmatism in New Mexico—comparison with Andean volcanism and potential for future volcanism". New Mexico Bureau of Geology and Mineral Resources Bulletin 160: 13–40. http://geoinfo.nmt.edu/publications/bulletins/160/downloads/02chapin.pdf. Retrieved 2010-04-29.
- ^ Baldridge, W. Scott (2004). Geology of the American Southwest. Cambridge. pp. 218–223. ISBN 978-0521-01666-7.
- ^ McIntosh, W. C.; Chapin, C. E.; Ratte, J. C. and Sutter, J. F. (1992) "Time-stratigraphic framework for the Eocene-Oligocene Mogollon-Datil volcanic field, southwest New Mexico" GSA Bulletin 104(7): pp. 851-871, page 851, doi:10.1130/0016-7606(1992)104<0851:TSFFTE>2.3.CO;2
- ^ Reid, H.G. (1911). "Remarkable earthquakes in central New Mexico in 1906 and 1907". Bull. Seism. Soc. Am. 1: 10–16.
- ^ Sanford, A.R.; R.S. Balch, and K.W. Lin (1995). A seismic anomaly in the Rio Grande Rift near Socorro, New Mexico. 78. Socorro, New Mexico. 17.
- ^ Schlue, J.; Aster, R., Meyer, R. (1996). "A lower-crustal extension to a mid-crustal magma body in the Rio Grande Rift, New Mexico". J. Geophys. Res. 101 (25): 283-25, 291.
- ^ Fialko, Y., and M. Simons (2001). "Evidence for on-going inflation of the Socorro magma body, New Mexico, from interferometric synthetic aperture radar imaging". Geop. Res. Lett. 28: 3549–3552. doi:10.1029/2001GL013318.
- ^ Weber, Robert H. (1971) "K-Ar ages of Tertiary igneous rocks in central and western New Mexico" Isochron/West 1(1): pp. 33–45
- ^ a b c "Tertiary and Quaternary: Baca Formation" Open File Report 94 (1977), New Mexico Bureau of Geology & Mineral Resources, page 88
- ^ a b Chapin, Charles E. et al. (1978) "Exploration framework of the Socorro geothermal area, New Mexico" pp. 114–129 In Chapin, Charles E. et al. (editors) Field guide to selected cauldrons and mining districts of the Datil-Mogollon volcanic field Special Publication NO. 7, New Mexico Geological Society, OCLC 4960990
- ^ Winchester, Dean E. (1920) Geology of Alamosa Creek Valley, Socorro County, New Mexico with special reference to the occurrence of oil and gas U.S. Geological Survey Bulletin 716-A, OCLC 6007605
- ^ Tonking, William H. (1957) Geology of the Puertecito quadrangle, Socorro County, New Mexico New Mexico Bureau of Mines and Mineral Resources Bulletin 41, OCLC 3922409
- ^ Brown, David M. (1972) Geology of the Southern Bear Mountains, Socorro County, New Mexico Thesis, New Mexico Institute of Mining and Technology, Socorro, New Mexico, OCLC 23979688
- ^ Chamberlin, Richard M., McIntosh, William C., and Chapin, Charles E., "Oligocene calderas, mafic lavas and radiating mafic dikes of the Socorro-Magdalena magmatic system, Rio Grande rift, New Mexico: surface expression of a miniplume?"
- ^ a b c d e f Chamberlin, Richard M.; Chapin, Charles E., and McIntosh, William C. (2002). Poster: Westward Migrating Ignimbrite Calderas and a Large Radiating Mafi Dike Swarm of Oligocene Age, Central Rio Grande Rift, New Mexico: Surface Expression of an Upper Mantle Diapir?. New Mexico Tech, Socorro NM 87801: New Mexico Bureau of Geology and Mineral Resources. pp. 22. http://geoinfo.nmt.edu/staff/chamberlin/mrds/Chamberlin_2002_GSA_poster.pdf. Retrieved 2010-04-29.
- ^ a b c d e f g h "Gila Cliff Dwellings National Monument". New Mexico Bureau of Geology & Mineral Resources. http://geoinfo.nmt.edu/tour/federal/monuments/gila_cliff_dwellings/home.html. Retrieved 2010-04-29. citing from Chapin, C.E., McIntosh, W.C., and Chamberlin, R.M. (2004), "The Late Eocene—Oligocene peak of Cenozoic volcanism in southwestern New Mexico", in Mack, G.H., and Giles, K.A., The Geology of New Mexico, a Geologic History, 11, New Mexico Geological Society Special Publication, pp. 271–294, http://nmgs.nmt.edu/publications/special/11/
- ^ Ward, Peter L. (2 April 2009). "Sulfur Dioxide Initiates Global Climate Change in Four Ways". Thin Solid Films 517 (11): 3188–3203. doi:10.1016/j.tsf.2009.01.005. http://www.tetontectonics.org/Climate/SO2InitiatesClimateChange.pdf. Retrieved 2010-03-19., additional material: "Supplementary Table to P.L. Ward, Thin Solid Films (2009) Major volcanic eruptions and provinces". Teton Tectonics. http://www.tetontectonics.org/Climate/Table_S1.pdf. Retrieved 2010-03-16. and "Supplementary References to P.L. Ward, Thin Solid Films (2009)". Teton Tectonics. http://www.tetontectonics.org/Climate/Table_S1_References.pdf. Retrieved 2010-03-16.
Further reading
- Elston, W. E. (1976) "Glossary of stratigraphic terms of the Mogollon-Datil volcanic province" pp. 135–145 In Elston, W. E. and Northrop, S. A. Cenozoic volcanism in southwestern New Mexico: A Volume in Memory of Rodney C. Rhodes, 1943-1975 New Mexico Geological Society Special Publication No. 5, Socorro, New Mexico, OCLC 2841953
Categories:- Volcanic fields of the western United States
- Volcanoes of New Mexico
- Landforms of Catron County, New Mexico
- Colorado Plateau
Wikimedia Foundation. 2010.