Claude Lemaréchal

Claude Lemaréchal

Claude Lemaréchal is a French applied mathematician.

In mathematical optimization, Claude Lemaréchal is known for his work in numerical methods for nonlinear optimization, especially for problems with nondifferentiable kinks. Lemaréchal and Phil. Wolfe pioneered bundle methods of descent for convex minimization.[1]

Claude Lemaréchal is a senior researcher (directeur de recherche) at INRIA[2] near Grenoble, France.

Contents

Awards

In 1994, Claude Lemaréchal and Roger J-B Wets were each awarded the George B. Dantzig Prize. Recognizing "original research that has had a major impact on the field of mathematical programming", the Dantzig Prize is awarded by the Society for Industrial and Applied Mathematics (SIAM) and the Mathematical Programming Society (MPS).[1]

Lagrangian duality and nonconvex primal problems

Soon after joining INRIA (then named "IRIA"), Lemaréchal had the assignment of helping a glass-manufacturer with a problem of scheduling its production, a problem whose first formulation required minimizing a non-convex function. For this non-convex minimization problem, Lemaréchal applied the theory of Lagrangian duality that was described in Lasdon's Optimization Theory for Large Systems.[3][4] Because the primal problem was non-convex, there was no guarantee that a solution to the dual problem would provide useful information about the primal. Nonetheless, the dual problem did furnish useful information.[5] Lemaréchal's success with Lagrangian dual methods on nonlinear programming problems with nonconvexities interested Ivar Ekeland and Jean–Pierre Aubin, who applied the Shapley–Folkman lemma to explain the Lemaréchal's success.[6][7] The Aubin–Ekeland analysis of duality gaps considered the convexclosure of a nonconvex minimization problem — that is, the problem defined by the closed convex hull of the epigraph of the original problem. Following Ekeland and Aubin, similar applications of the Shapley–Folkman lemma are described in optimization monographs[7][8] and textbooks.[9] These developments were catalyzed by Lemaréchal's demonstration that Lagrangian-dual methods were useful on some optimization problems that lacked convexity.

Bundle methods of descent

Lemaréchal's research also led to his work on (conjugate) subgradient methods and on bundle methods of descent for convex minimization problems.

Notes

  1. ^ a b Citation of Claude Lemaréchal for the George Dantzig Prize in 1994 in Optima, Issue 44 (1994) pages 4-5.
  2. ^ INRIA is the acronym for the National Institute for Research in Computer Science and Control, in the original French, Institut national de recherche en informatique et en automatique (INRIA).
  3. ^
    • Lasdon, Leon S. (1970). Optimization theory for large systems. Macmillan series in operations research. New York: The Macmillan Company. pp. xi+523. MR337317. 
    • Lasdon, Leon S. (2002). Optimization theory for large systems (reprint of the 1970 Macmillan ed.). Mineola, New York: Dover Publications, Inc.. pp. xiii+523. MR1888251. 
  4. ^ Aardal, Karen (March 1995). "Optima interview Claude Lemaréchal". Optima: Mathematical Programming Society Newsletter: 2–4. http://www.mathprog.org/Old-Optima-Issues/optima45.pdf. 
  5. ^
    • Lemaréchal, Claude (Avril [April] 1973). Utilisation de la dualité dans les problémes non convexes [Use of duality for non-convex problems]. Domaine de Voluceau, Rocquencourt, 78150 Le Chesnay, France: IRIA (Laboratoire de recherche en informatique et automatique). pp. 41 
    • Lemaréchal's experiments were discussed in later publications:
  6. ^ Aubin, J.P.; Ekeland, I. (1976). "Estimates of the duality gap in nonconvex optimization". Mathematics of operations research 1 (3): 225–245. doi:10.1287/moor.1.3.225. JSTOR 3689565. MR449695 
  7. ^ a b
    • Page 373: Ekeland, Ivar (1976). "Appendix I: An a priori estimate in convex programming". In Ekeland, Ivar and Temam, Roger. Convex analysis and variational problems. Studies in mathematics and its applications. 1 (translated, with new appendices, from the (1973) French ed.). Amsterdam: North-Holland Publishing Co.. pp. 357–373. MR463994. 
    • Page 373: Ekeland, Ivar (1999). "Appendix I: An a priori estimate in convex programming". In Ekeland, Ivar and Temam, Roger. Convex analysis and variational problems. Classics in applied mathematics. 28 (Corrected reprinting of the (1976) North–Holland ed.). Philadelphia, PA: Society for Industrial and Applied Mathematics (SIAM). pp. 357–373. ISBN 0-89871-450-8. MR1727362. 
  8. ^
    • Aubin, Jean-Pierre (2007). "14.2 Duality in the case of non-convex integral criterion and constraints, pages 458-476 (especially 14.2.3 The Shapley-Folkman theorem, pages 463-465)". Mathematical methods of game and economic theory (Reprint with a new author's preface of 1982 revised English ed.). Mineola, NY: Dover Publications, Inc.. pp. xxxii+616. ISBN 978-0-486-46265-3, 0-486-46265-X. MR2449499. 
    • Besides presenting Ekeland-style analysis of duality gaps (acknowledgment on page 381), Bertsekas (1982) applies Lagrangian dual methods to the scheduling of electrical power plants ("unit commitment problems"), where nonconvexity appears because of integer constraints: Bertsekas, Dimitri P. (1982). "5.6 Large scale separable integer programming problems and the exponential method of multipliers". Constrained optimization and Lagrange multiplier methods. Computer Science and Applied Mathematics (first [Reprinted 1996 Athena Scientific, Belmont, MA., 1-886529-04-3] ed.). New York: Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers]. pp. 364–381. ISBN 0-12-093480-9. MR690767. 
  9. ^
    • See Figure 5.1.9 (page 496): Bertsekas, Dimitri P. (1999). "5.1.6 Separable problems and their geometry". Nonlinear Programming (Second ed.). Cambridge, MA.: Athena Scientific. pp. 494–498. ISBN 1-886529-00-0. 
    • Pages 267–279: Hiriart-Urruty, Jean-Baptiste (1998). "6 Ensembles et fonctions convexes. Projection sur un convexe fermé". Optimisation et analyse convexe. Mathématiques. Paris: Presses Universitaires de France. pp. 247–306. ISBN 2-13-048983-4. MR1613914. 

Bibliography

Biographical

Scientific publications

  • Bonnans, J. Frédéric; Gilbert, J. Charles; Lemaréchal, Claude; Sagastizábal, Claudia A. (2006). Numerical optimization: Theoretical and practical aspects. Universitext (Second revised ed. of translation of 1997 French ed.). Berlin: Springer-Verlag. pp. xiv+490. doi:10.1007/978-3-540-35447-5. ISBN 3-540-35445-X. MR2265882. http://www.springer.com/mathematics/applications/book/978-3-540-35445-1. 
  • Hiriart-Urruty, Jean-Baptiste; Lemaréchal, Claude (2001). Fundamentals of convex analysis. Grundlehren Text Editions (Abridged revision of Convex analysis and minimization algorithms, Volumes I and II ed.). Berlin: Springer-Verlag. pp. x+259. ISBN 3-540-42205-6. MR1865628. 
    • Hiriart-Urruty, Jean-Baptiste; Lemaréchal, Claude (1993). Convex analysis and minimization algorithms, Volume I: Fundamentals. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. 305. Berlin: Springer-Verlag. pp. xviii+417. ISBN 3-540-56850-6. 
    • Hiriart-Urruty, Jean-Baptiste; Lemaréchal, Claude (1993). Convex analysis and minimization algorithms, Volume II: Advanced theory and bundle methods. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. 306. Berlin: Springer-Verlag. pp. xviii+346. ISBN 3-540-56852-2. 
  • Lemaréchal, Claude (2001). "Lagrangian relaxation". In Michael Jünger and Denis Naddef. Computational combinatorial optimization: Papers from the Spring School held in Schloß Dagstuhl, May 15–19, 2000. Lecture Notes in Computer Science. 2241. Berlin: Springer-Verlag. pp. 112–156. doi:10.1007/3-540-45586-8_4. ISBN 3-540-42877-1. MR1900016. 
  • Lemaréchal, Claude (1989). "Nondifferentiable optimization". In G. L. Nemhauser, A. H. G. Rinnooy Kan, and M. J. Todd. Optimization. Handbooks in operations research and management science. 1. Amsterdam: North-Holland Publishing Co.. pp. 529–572. doi:10.1016/S0927-0507(89)01008-X. ISBN 0-444-87284-1. MR1105106. http://www.sciencedirect.com. 

Wikimedia Foundation. 2010.

Игры ⚽ Нужна курсовая?

Look at other dictionaries:

  • Mathematical optimization — For other uses, see Optimization (disambiguation). The maximum of a paraboloid (red dot) In mathematics, computational science, or management science, mathematical optimization (alternatively, optimization or mathematical programming) refers to… …   Wikipedia

  • Fonction propre (analyse convexe) —  Pour les notions de fonction propre en analyse spectrale et en topologie, voir respectivement Fonction propre et Application propre (en) En analyse convexe (une branche des mathématiques), on qualifie de propre une fonction à valeurs… …   Wikipédia en Français

  • Subderivative — In mathematics, the concepts of subderivative, subgradient, and subdifferential arise in convex analysis, that is, in the study of convex functions, often in connection to convex optimization. Let f : I →R be a real valued convex function defined …   Wikipedia

  • Mathematical Programming Society — Known as the Mathematical Programming Society until 2010,[1] the Mathematical Optimization Society (MOS) is an international association of researchers active in optimization. The MOS encourages the research, development, and use of optimization… …   Wikipedia

  • Conical combination — Given a finite number of vectors in a real vector space, a conical combination or a conical sum [1] [2] of these vectors is a vector of the form where the real numbers satisfy …   Wikipedia

  • Adherence, interieur et frontiere d'un convexe — Adhérence, intérieur et frontière d un convexe Dans le cas particulier de parties convexes d un espace vectoriel topologique, les opérateurs topologiques élémentaires d adhérence ou intérieur préservent la convexité. Sous une réserve technique… …   Wikipédia en Français

  • Adhérence, intérieur et frontière d'un convexe — Dans le cas particulier de parties convexes d un espace vectoriel topologique, les opérateurs topologiques élémentaires d adhérence ou intérieur préservent la convexité. Sous une réserve technique mineure (qui justifie l introduction de concepts… …   Wikipédia en Français

  • Application sous-lineaire — Application sous linéaire Soit V un espace vectoriel sur . On dit qu une application est sous linéaire lorsque : (1) Pour tous vecteurs x et y de V, (on dit que s est sous additive) (2) Pour tout vecteur …   Wikipédia en Français

  • Application sous-linéaire — Soit V un espace vectoriel sur . On dit qu une application est sous linéaire lorsque : (1) Pour tous vecteurs x et y de V, (on dit que s est sous additive) (2) Pour tout vecteur x …   Wikipédia en Français

  • Fonction Convexe — En mathématiques, et plus particulièrement en analyse, une fonction convexe est une fonction numérique vérifiant une propriété de sous additivité vis à vis de la barycentration. Graphiquement, cela correspond à un graphe dont la « partie… …   Wikipédia en Français

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”